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Abstract 

Background: The human exposome is composed of diverse metabolites and small chemical compounds originated 
from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite 
levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling 
of human metabolome using high‑resolution mass spectrometry (HRMS) combined with genome‑wide genotyping 
allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discov‑
ered and replicated genotype–metabotype associations. However, these associations have not been characterized in 
children.

Results: We conducted the largest genome by metabolome‑wide association study to date of children (N = 441) 
using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow‑sense heritability (h2) 
estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood 
(GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most 
of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbo‑
hydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis 
was performed to identify genetic variants that were potentially associated with plasma levels. Fifty‑four associations 
among 29 features and 43 genetic variants were identified at a genome‑wide significance threshold p < 3.5 ×  10–12 
(= 5 ×  10–8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl 
lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential can‑
didates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time 
(RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene‑level enrichment analysis using MAGMA revealed 
highly interconnected modules for dADP biosynthesis, sterol synthesis, and long‑chain fatty acid transport in the 
gene‑feature network.

Conclusion: Comprehensive profiling of plasma metabolome across age groups combined with genome‑wide 
genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The 
developmental trajectory of a biological system is shaped by gene–environment interaction especially in early life. 
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Background
Metabolites are indicators and effectors of biologi-
cal processes that are controlled by genetic and envi-
ronmental factors; thus, metabolite levels reflect 
homeostatic and pathological status [1]. Furthermore, 
metabolites are the regulators of epigenetic modifica-
tion, gene expression, and protein activity [2]. Com-
prehensive profiling of metabolites in an individual—a 
metabotype—can provide a snapshot of the host genetic 
makeup and its interaction with diet and environmen-
tal exposures. Genetic variants affect metabolite levels 
by regulating gene expression and/or changing protein 
function in metabolic pathways. A single base change 
in DNA sequence can have a strong impact on metabo-
lite concentrations in patients with an inborn error of 
metabolism (IEM); examining perturbed metabolic 
pathways helps elucidate the molecular pathophysi-
ology of human diseases and therapeutic targets [3]. 
Furthermore, metabolite levels can be used as endo-
phenotype that mediates genetic risks for common 
diseases [4] and predict inter-individual differences in 
drug response that are associated with pharmacoge-
netic variations [5].

Endogenous metabolite levels are highly heritable 
[6, 7]; genetically influenced metabotypes (GIMs) can 
be discerned with targeted or untargeted metabolomic 
profiling combined with genome-wide genotyping [8–
11]. Using a genome-wide association study (GWAS) 
framework, a recent meta-analysis confirmed the 
reported associations between single nucleotide vari-
ants (SNVs) and metabotypes from independent cohort 
studies of adults [12]. The human metabolome is likely 
to contain hundreds of thousands of chemicals [13]; 
however, the breadth of chemical space coverage was 
limited up to few hundreds in previous studies. There-
fore, the full extent of GIMs in the human metabolome 
is not yet known.

Untargeted high-resolution metabolomics (HRM) 
platforms enable quantitative measurements for tens of 
thousands of features with mass-to-charge ratios (m/z) 
with retention times (in seconds; RT) from endogenous 
and exogenous origins in biospecimens [3, 14]. A liquid 
chromatography high-resolution mass spectrometry 
(LC-HRMS) platform combined with genome-wide 
genotyping can provide a comprehensive snapshot of 
GIMs. With this platform, we previously evaluated the 
coverage of chemical space and constructed a global 
correlation map of the human plasma metabolome, 

measuring metabolites produced by the gut microbi-
ome and xenobiotics and finding that many metabolites 
were associated with demographic characteristics [15].

In the current study, we deployed an untargeted LC-
HRMS platform to analyze plasma samples collected 
from a pediatric cohort (N = 441) for which common 
genetic variants were characterized using genome-wide 
genotyping microarray. By interrogating 14,342 features 
and 619,688 common genetic variants, we first esti-
mated narrow-sense heritability for all features. Further 
we performed a genome by metabolome-wide associa-
tion study (GxMWAS) to replicate previously reported 
GIMs in our pediatric cohort and to discover novel GIM 
candidates after controlling for age, gender, and global 
genetic ancestry. Our results clearly revealed the extent 
of genetic contribution to metabotype across age groups 
for a wide range of chemical species.

Results
Chemical space coverage and the features associated 
with demographic factors
Samples, data generation, and analysis workflow are 
depicted in Fig.  1A. All LC-HRMS analysis was per-
formed in triplicate using a dual column chromatogra-
phy scheme that included hydrophilic interaction liquid 
chromatography (HILIC) and reversed phase liquid 
chromatography (RPLC; C18) columns to maximize the 
chemical space coverage. A total of 14,342 features were 
quantitatively measured with accurate m/z and RT for 
HILIC and C18 columns (N = 8739 and 5603, respec-
tively). All features were subjected for metabolite anno-
tation using xMSannotator [16], and high or medium 
confidence annotations at a 5-ppm mass tolerance win-
dow were used to reduce incorrect annotations (see 
Methods). A subset of features was experimentally iden-
tified using LC–MS/MS with authentic standards (N = 97 
for HILIC and 69 for C18, Additional file  2: Table  S1) 
[17]. The demographic characteristics of our cohort are 
summarized in Additional file  3: Table  S2. To prioritize 
metabolites that were associated with demographic vari-
ables, we used a generalized linear model while control-
ling for batch effect and global genetic ancestry using the 
top ten eigenvectors—hereafter referred to as principal 
components (PCs) 1–10—from EIGENSTRAT analysis 
of 619,688 common variants (see Additional file 1: Fig. S1 
for population stratification with the first two PCs).

A total of 338 features were associated with age and 
gender (false discovery rate (FDR) < 0.05, N = 120 and 

Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are 
required to understand gene–environment interaction toward healthy aging trajectories.
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218, respectively), of which 19 were among the identi-
fied metabolites using reference standards (N = 9 and 10, 
respectively; Additional file 4: Table S3). Among the age-
correlated features, urate and creatinine are known to 
be correlated with age [18, 19] and we found novel asso-
ciations including cystine, trimethyllysine, quinic acid, 
butyrobetaine, arachidonic acid, and retinol. Between 
females and males, amino acid derivatives (hydroxypro-
line, hydroxylysine, dimethylarginine), carnitine, cho-
lines ((lysoPC(18:0) and lysoPC(18:1)), microbial product 
(valerobetaine), and a product of urea cycle (fumaric 
acid) were significantly different among the identified 
metabolites.

As of the impact of global genetic ancestry on individu-
al’s metabotype, PC1 that distinguishes African descents 
from non-African descents was correlated with 141 fea-
tures including 8 identified metabolites: amino acid 
derivatives (citrulline, indoleacetate, and kynurenine), 
carbohydrate (arabinose), vitamins (thiamine (B1), nico-
tinamide (B3)), and cholines (lysoPE(18:0), lysoPE(20:3)) 
(FDR < 0.05) (Additional file 4: Table S3). Except for PC4 

and PC7, the other PCs were not correlated with any of 
the identified metabolites. PC4 was correlated with sub-
groups of European decent and PC7 distinguished two 
individuals of European descents. Nonetheless, the fea-
tures that were significantly correlated with PCs may 
reflect combined effect of genetic and environmental 
factors, such as diet and lifestyle. We did not observe any 
bias in m/z and RT for the significant features associated 
with demographic variables—age, gender, and global 
genetic ancestry (Additional file 1: Figs. S2–S4).

Next, we performed pathway enrichment analysis 
using Mummichog [20] with statistical scores obtained 
from univariate analyses as described above. Pathways 
were selected for adjusted p value < 0.01 with ≥ 5 iden-
tified metabolites or uniquely annotated features (i.e., 
level 2 according to Schymanski et  al. [21], see Meth-
ods) overlapping for each pathway (Additional file  5: 
Table  S4). Glutamate metabolism pathway including 
five identified metabolites—glutamine, glutamate, car-
bamoyl phosphate, 2-oxoglutarate, and N-methylgly-
cine—was significant for age (adjusted p value 0.00495). 

LC-HRMS using two orthogonal liquid 
chromatography: HILIC and C18    
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Fig. 1 Overview of integrative analysis workflow and narrow‑sense heritability estimates. A Data generation and analysis workflow. B Overall 
distribution of the narrow‑sense heritability (h2) for all features. C Composition of features by their h2 values across chemical classes. The h2 values 
are binned into five groups by 0.2. All features’ group (top) includes all 14,342 features. Only the identified metabolites are grouped under each of 
the 9 categories
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Tricarboxylic acid (TCA) cycle pathway was enriched 
with differentially detected metabolites between males 
and females. Ascorbate and aldarate metabolism and 
pentose phosphate pathways were significant for PC1 
and PC4.

Narrow‑sense heritability estimation of feature levels
To capture the genetic influence on the variance of 
metabolite levels across individuals, we estimated a 
narrow-sense heritability (h2) of feature levels using 
genomic relatedness matrix (GRM) restricted maxi-
mum likelihood (GREML) method implemented in 
genome-wide complex trait analysis (GCTA) [22]. We 
found a wide range of h2 estimates with a bimodal dis-
tribution having 15.9% of features with high h2 (> 0.8) 
and 62.0% with low h2 (< 0.2) (Fig.  1B). Next, we 
checked h2 distributions in each chemical species with 
the identified metabolites. Carbohydrates and lipids 
had low h2 overall with 7.1% and 3.7% had h2 between 
0.6–0.8, respectively. No feature was high h2 (> 0.8) for 
these chemical classes. In comparison, large propor-
tions of amino acids and derivatives and nucleic acids 

had high h2 (> 0.8) (24.5% and 33.3%, respectively) 
(Fig. 1C).

Genome by metabolome‑wide association analysis
We calculated age and gender corrected feature intensi-
ties and included the top 10 PCs as covariates to perform 
GxMWAS (see Methods) discovering 54 associations 
among 29 features and 43 common genetic variants at 
the threshold of p < 3.5 ×  10–12 (= 5 ×  10–8/14,342 fea-
tures) (Table 1 for selected associations; Fig. 2 for asso-
ciations involving identified metabolites with p < 5 ×  10–8; 
Additional file  6: Table  S5 for full list of associations at 
genome-wide significance level, p < 5 ×  10–8; Additional 
file  7: Table  S6 for full list of high and medium confi-
dence annotations at 5-ppm mass tolerance). On average, 
a genetic variant was associated with 1.3 ± 0.79 features 
(range 1–4) and a feature was associated with the median 
of one variant (range 1–5). Most variants associated with 
feature levels were intronic (25 of 43, 58.1%) and three 
(7.0%) were in protein coding exons.

A previously reported GIM between PYROXD2 and 
Ne,Ne dimethyllysine (m/z 175.1442, RT 104.5) was suc-
cessfully replicated in our pediatric cohort, which was 
indeed the strongest association (p = 6.2 ×  10–21) in our 

Table 1 Genetically influenced metabolites. Significant genetic variant–metabolite associations at a genome‑wide significance of 
p < 3.5 ×  10–12 (= 5 ×  10–8/14,342 features) are shown.

The features with identified metabolites or high/medium confidence annotations are listed with chemical names. EA, effect allele; OA, other allele; EAF, effect allele 
frequency; m/z, mass-to-charge ratio; and RT, retention time in seconds

*Represented as chromosome:position based on the human reference genome GRCh38

**Previously reported genetically influenced metabotypes in adults

Feature (m/z, RT) Lead SNP position* EA, OA EAF Beta Standard error p value Candidate genes

m/z 394.8915, RT 68.1 chr9:72,902,395 G, A 0.14 − 0.49 0.063 4.94E−14 ALDH1A1

m/z 640.3195, RT 278.2 chr20:38,052,517 G, T 0.08 − 1.23 0.167 7.35E−13 RPRD1B

chr10:66,637,441 A, G 0.07 − 0.69 0.090 1.56E−13 CTNNA3

m/z 709.0644, RT 190.3 chr8:47,661,411 A, G 0.07 0.93 0.128 1.80E−12 SPIDR

m/z 101.5811, RT 100.6 chr10:98,377,943 T, C 0.46 − 0.61 0.065 4.82E−19 PYROXD2**

m/z 161.1285, RT 106.1
(N6‑Methyl‑L‑lysine)

chr10:98,377,943 T, C 0.46 − 0.49 0.061 6.98E−15 PYROXD2**

m/z 162.1321, RT 106.9
(N6‑Methyl‑L‑lysine)

chr10:98,377,943 T, C 0.46 − 0.54 0.064 3.32E−16 PYROXD2**

m/z 175.1442, RT 104.5
(Ne,Ne dimethyllysine)

chr10:98,377,943 T, C 0.46 − 0.55 0.056 6.20E−21 PYROXD2**

m/z 188.9574, RT 44.2 chr12:66,599,541 C, T 0.06 − 1.22 0.164 5.69E−13 GRIP1

chr15:88,215,350 A, C 0.15 − 0.84 0.116 2.85E−12 NTRK3

chr21:14,901,801 G, C 0.13 − 0.85 0.117 1.94E−12 NRIP1

m/z 220.1777, RT 24 chr16:7,273,260 C, T 0.08 − 1.03 0.137 3.45E−13 RBFOX1

m/z 269.0023, RT 125.5
(fenson)

chr4:40,241,127 G, C 0.06 0.47 0.061 9.20E−14 RHOH

m/z 283.2741, RT 27.6 chr7:12,354,019 G, A 0.12 0.27 0.037 1.55E−12 VWDE

chr7:72,362,534 A, G 0.07 0.35 0.047 3.02E−13 CALN1

m/z 300.2167, RT 37.1 chr2:210,210,185 C, T 0.31 0.68 0.077 5.62E−17 ACADL**

m/z 781.7483, RT 89.3 chr8:3,674,391 C, T 0.11 0.73 0.093 2.29E−14 CSMD1



Page 5 of 14Lee et al. Human Genomics           (2022) 16:67  

Fig. 2 Genetically influenced metabotypes for identified metabolites. Each association is represented by identified metabolite (circles) pointing 
genetic variants along the genome (p < 5 ×  10–8). Gene name is shown for significant loci next to the circle
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results (Fig. 3A). This association has been independently 
replicated by the studies using urine, plasma, and cer-
ebrospinal fluid (CSF) samples [4, 23–25]. The ACADL 
gene encodes acyl-CoA dehydrogenase long chain 
(ACADL) that is a subunit of the four enzymes involved 
in the initial step of mitochondrial beta-oxidation of 
straight-chain fatty acid. One missense and two intronic 
variants were significantly associated with a feature (m/z 
300.2167, RT 37.1) that was annotated as menthol propyl-
ene glycol carbonate (HMDB identifier: HMDB0039785) 
at 5-ppm tolerance (i.e., level 5 identification by crite-
ria of Schymanski et  al. [21]) (Fig.  3B). The association 
between nonanoyl carnitine and ACADL (p = 2.3 ×  10–9) 
did not pass our stringent statistical significance thresh-
old, while this association has been previously reported.

Lipid species had low h2 overall; however, we found 
novel GIM candidates for the features that uniquely 
matched to lipids based on the level 5 identification crite-
ria of Schymanski et al. [21]. Among novel GIMs discov-
ered in our cohort, Tridecanol (m/z 283.2741, RT 27.6) 
level was associated with intronic SNVs in CALN1 and 
VWDE (p values 3.02 ×  10–13 and 1.55 ×  10–12, respec-
tively) (Fig.  3C, D). A monostearyl alcohol triglyceride 
(m/z 781.7483, RT 89.3) was associated with an intronic 
SNV (rs2624100) in the CSMD1 (CUB and Sushi Multi-
ple Domains 1) gene (p = 2.29 ×  10–14).

Some feature levels were associated with multiple 
genomic loci. For instance, a feature (m/z 188.9574, RT 
44.2) was associated with variants in three genes—GRIP1, 
NTRK3, and NRIP1—on chromosomes 12, 15, and 21 
(p values 5.69 ×  10–13, 2.85 ×  10–12 and 1.94 ×  10–12, 
respectively). The GRIP1 (glutamate receptor-interact-
ing protein 1) gene on chromosome 12q14.3 is involved 
in synapse formation [26]. The NTRK3 (neurotrophic 
receptor tyrosine kinase 3) gene on chromosome 15q25.3 
encodes a receptor tyrosine kinase that binds to its ligand 
neurotrophin-3 and plays a role in nervous system devel-
opment. AF127577.4 is a long non-coding RNA on chro-
mosome 21q11.2 and 5′-end overlaps with the NRIP1 
gene. Nuclear receptor-interacting protein 1 (NRIP1) is a 
nuclear protein that interacts with the hormone-depend-
ent nuclear receptors and expressed in neuronal and glial 
cells [27].

For the identified metabolites, we found several GIM 
candidates including those  previously reported at a less 

stringent threshold of p < 5 ×  10–8. For amino acids and 
its derivatives, we found GIM candidates for arginine, 
glutamate, lysine, and sulfinoalanine. Arginine and lysine 
levels were associated with multiple genetic loci in dif-
ferent genes. Six loci including intronic variants in the 
APBB2 and CHAF1A genes were significantly associ-
ated with plasma arginine level. Lysine level was asso-
ciated with four loci including intronic variants in the 
CCDC85A, CAMK4, TMEM106B, and OSBPL1A genes. 
Glutamate is the most abundant excitatory neurotrans-
mitter in CNS, and its plasma level was significantly asso-
ciated with genetic variants in the ADAMTS8 and RHOU 
genes. For carbohydrates, glucose level was significant 
for an intronic variant (rs11954514) in the HARS1 (His-
tidyl-tRNA synthetase 1) gene that is a disease-causing 
gene for Usher syndrome type 3b (MIM ID: 614504) [28]. 
An intronic variant in the SLC7A2 gene was associated 
with plasma glycogen level. The SLC7A2 gene encodes 
a cationic amino acid transporter and is implicated in 
arginine metabolism. Slc7a2 knockout mice had 20% 
higher blood glucose compared to wild-type mice [29]. 
N-Acetylneuraminate (Neu5Ac) is a sialic acid found in 
cell membrane. In neuronal cells, Neu5Ac residues are 
found in membrane bound glycoproteins, i.e., ganglio-
sides. Neu5Ac interacts with bacterial and viral patho-
gens in diverse cell types. Multiple SNVs in the PALLD 
gene were associated with plasma Neu5Ac levels. Palla-
din, encoded by the PALLD gene, is a cytoskeletal protein 
found in actin filaments. Among lipid species, butyrylcar-
nitine-ACADS association was notable, which has been 
reported in independent studies. All associations signifi-
cant at a threshold of p < 5 ×  10–8, along with m/z, RT and 
annotation, are listed in Additional file  6: Table  S5. The 
full list of annotations with high or medium confidence 
by xMSannotator is shown in Additional file 7: Table S6.

Gene‑level enrichment with the variants associated 
with features
Next, we performed a gene-level enrichment analy-
sis for each feature with its GWAS summary statistics 
using Multi-marker Analysis of GenoMic Annotation 
(MAGMA) [30]. A total of 572 genes were enriched with 
variants associated with 217 features at FDR < 0.01 (Addi-
tional file  8: Table  S7). The most significant association 
between gene and feature was found for the SKIDA1 gene 

(See figure on next page.)
Fig. 3 Regional plots for significant genotype–metabotype associations. The genomic coordinates (x‑axis) are based on GRCh38. The variant with 
the strongest p value is highlighted with its coordinate, reference, and variant alleles. The boxplot (shown next to the regional plot) shows the 
distribution of normalized feature intensity by genotype for the strongest variant. Feature annotation is from xMSannotator with high and medium 
confidence or from HMDB with exact mass at 5‑ppm tolerance (level 5 annotation according to Schymanski et al.) A significant loci for Ne,Ne 
dimethyllysine (m/z 175.1442, RT 104.5) around PYROXD2 on chromosome 10. B loci for Menthol propylene glycol carbonate (m/z 300.2167, RT 
37.1) on ACADL on chromosome 2. C, D shows the two separate loci on chromosome 7 for Tridecanol (m/z 283.2741, RT 27.6), located in two genes 
CALN1 and VWDE, respectively
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Fig. 3 (See legend on previous page.)
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and fenson (m/z 269.0023, RT 125.5) (FDR 6.64 ×  10–8). 
Among the identified metabolites, the HLA-C gene was 
associated with arginine level (FDR 0.0084). Bilirubin was 
significantly associated with UDP-glucuronosyltrans-
ferase (UDP1A) isoforms, which has been replicated by 
independent studies using different metabolomics plat-
forms [4, 7, 31, 32]. Of the ten features associated with 
UGT1A isoforms, six were identified and/or annotated 
as bilirubin, while four features were not. Correlation 
structure of these features showed that the unmatched 
features could represent other chemicals than bilirubin 
(Additional file 1: Fig. S5) as UGT1As are the enzymes of 
the glucuronidation pathway processing small lipophilic 
molecules such as steroids, bilirubin, hormones, and 
drugs into water-soluble and excretable metabolites.

We created a network of gene-feature associations with 
MAGMA results to check the interconnectivity (Fig. 4A 
and Additional file  1: Fig. S6). The average number of 
neighbors was 2.0 and a one-to-one association was 
found for 67 gene-feature pairs. The largest subgraph 
had 13 features and 72 genes. We checked enriched gene 
ontology terms for the genes in each subgraph with 6 
or more genes. Six subgraphs were enriched with one 
or more of the Gene Ontology (GO) biological pathway 
terms (hypergeometric test, FDR < 0.05). A subgraph 
with 4 features and 19 genes was enriched with the genes 
involved in purine metabolism such as dADP (deoxy-
adenosine diphosphate) biosynthetic process (hypergeo-
metric test, FDR 0.018, Fig. 4B). A feature (m/z 467.256, 
RT 278.1) was associated with the variants in 12 genes 
that were enriched in nucleosome assembly (hypergeo-
metric test, FDR 0.013, Fig. 4C). Seven genes associated 
with a feature (m/z 522.734, RT 43.2) were enriched for 
plasma membrane long-chain fatty acid transport and 
ketone body biosynthetic process (hypergeometric test, 
FDR 0.036 and 0.036, respectively, Fig. 4D).

Revealing the underlying network modules 
with genetically influenced metabotypes
Focusing on the 29 GIMs with p < 3.5 ×  10–12, we identi-
fied a GIM-causal network at the type I error rate of 5%. 
Briefly, causal networks are based on conditional (in)
dependency established in the principles of Mendelian 

randomization [33]. We found two disjoint modules of 
interconnected GIMs. The modules comprised 7 and 
12 GIMs with directed connections pointing a predic-
tion target in each module (Fig.  4E, F). A prediction 
target captures the effect from multiple other GIMs 
in the module, so its concentration levels can be repre-
sentative of the module [33]. In the module with seven 
features (Fig.  4E), menthol propylene glycol carbonate 
(m/z 300.2167, RT 37.1) showed a significant connec-
tivity/dependency (p = 2 ×  10–4) with Ne,Ne dimethyl-
lysine (m/z 175.1442, RT 104.5). In the module with 12 
features, the connection between an unannotated fea-
ture (hilic_1914; m/z 188.9574, RT 44.2) and fenson (m/z 
269.0023, RT 125.5) was one of the most significant con-
nectivities (p = 5 ×  10–13) (Fig. 4F).

Discussion
In the human body, metabolites have diverse biologi-
cal functions such as the regulation of epigenome, 
transcription, translation, protein function, and signal 
transduction. Further, metabolites are indicators of gene–
environment interactions. Previous studies reported gen-
otype–metabotype associations to highlight the genetic 
contribution to metabolite concentrations; however, the 
extent of GIMs in the human exposome has not yet been 
known partly due to the limited coverages of chemical 
space in previous studies. In the current study, we used 
an untargeted metabolomics platform that provided a 
snapshot of thousands of metabolites. Age is one of the 
key demographic factors contributing the development of 
exposome. In our previous study, age was correlated with 
40.4% of metabolites measured in plasma samples [15]. 
Interestingly, age-correlated features were enriched for 
xenobiotics but depleted for nucleic acids and its deriva-
tives. In the current study, we aimed to estimate the con-
tribution of genetic factors to plasma concentrations of 
diverse chemical species for generally healthy individuals 
from 5 months to 60 years of age, while most of our study 
cohort (82.3%) were 20 years old or younger. The genetic 
contribution to metabolite levels varied across chemical 
classes. Narrow-sense heritability (h2) was small (< 0.2) 
for most features suggesting that environment fac-
tors might contribute more substantially to the human 

Fig. 4 Gene‑feature network. The gene‑feature network (A) with its modules enriched with the Gene Ontology biological pathway terms (B–D) 
and causal networks composed of 29 GIMs based on conditional (in)dependency augmented with principles of Mendelian randomization (E–F). A 
Gene‑feature network is constructed using MAGMA results (false discovery rate < 0.01). One‑to‑one associations are found for 67 gene‑feature pairs; 
however, the other genes and features are interconnected to form modules. B A module with four features and the genes enriched with dADP 
(deoxyadenosine diphosphate) biosynthetic process. C Twelve genes associated with a feature (m/z 467.256, RT 278.1) are over‑represented for 
nucleosome assembly. D Another feature (m/z 522.734, RT 43.2) is associated with the seven genes functioning plasma membrane long‑chain fatty 
acid transport. E, F Two modules identified from the causal network analysis of 29 GIMs. Annotated metabolites in each module provide information 
about the unannotated metabolites in the same module specially if they are highly connected (e.g., Ne,Ne dimethyllysine (m/z 175.144, RT 104.5) in 
(E). In the module in (F), a strong dependency (p = 5 ×  10–13) between an unannotated feature (m/z 188.9574, RT 44.2) and fenson (m/z 269.0023, RT 
125.5) may provide annotation information for the feature

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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exposome than genetic factors, overall. For instance, less 
than 10% of carbohydrates and lipids—likely linked with 
diet and lifestyle—had h2 > 0.6 and none of these species 
had h2 > 0.8. In contrast, the genetic influence seemed to 
be larger for some of amino acids and nucleic acids.

We successfully replicated the previous findings (e.g., 
UGT1A1 and bilirubin; PYROXD2 and methyllysines; 
and ACADS and butyrylcarnitine) that were described 
in adults. The strongest associations were found between 
lysine derivatives (i.e., methyllysines) and the genetic 
variants in PYROXD2. This association has been repli-
cated in multiple tissue types. Of note, Panyard and col-
leagues used 672 CSF samples to perform GxMWAS for 
378 metabolites of which the most significant association 
was found between N6-methyllysine and rs2147896 in 
PYROXD2 [4]. The same association was also discovered 
in our analysis of plasma metabolome. Indeed, ten out of 
top 16 GxMWAS results from the CSF study were also 
replicated in our study. These results suggest that, for 
IEMs caused by rare genetic variants with large effect, 
surrogate tissues such as blood can be used to under-
stand the molecular pathophysiology for which the pri-
mary affected tissues are difficult to biopsy.

Environmental contribution to plasma levels of carbo-
hydrates and lipids was larger than genetic factors; how-
ever, we found strong GIM candidates for these chemical 
species as well. Tridecanol (m/z 283.2741, RT 27.6) and 
intronic SNVs in the CALN1 and VWDE genes were sig-
nificantly associated. The CALN1 (calneuron 1) is a can-
didate gene for schizophrenia and intelligence, which 
was discovered in independent GWASs. The function of 
VWDE (von Willebrand factor D and EGF domains) gene 
product is not yet known while previous GWASs discov-
ered the risk alleles for frontotemporal dementia, depres-
sion, and coronary artery diseases in this gene.

A monostearyl alcohol triglyceride (m/z 781.7483, RT 
89.3) level was associated with the CSMD1 gene that 
encodes a transmembrane protein CSMD1. CSMD1 is 
an inhibitor of the complement component 3 (C3) con-
vertases that produce C3b and C3a-desArg. Of note, the 
active C3 fragment, C3a-desArg has insulin-like effects 
and is involved in triglyceride metabolism [34]. C3 
knockout mice demonstrate reduced body weight and 
fat mass [35]. CSMD1 is reported as a candidate gene for 
schizophrenia [36].

For carbohydrates, we found a novel association 
between plasma glucose level and an intronic variant 
in the HARS1 gene encoding HARSL. Loss of function 
mutations in HARS1 cause peripheral neuropathies that 
is likely caused by reduced translation efficiency [37, 38]. 
In patients with diabetes mellitus, peripheral neuropathy 
is a common complication observed in 6–51% [39].

Reported GIMs are mostly one-to-one relationships 
between a metabolite level and a genetic variant (or mul-
tiple variants in linkage disequilibrium); however, we 
found subgraphs with interconnected genes and features 
in our network analysis. Modularity of gene–metabolite 
network showed the complexity of genetic contributions 
to metabolic pathways. Using a causal inferential network 
analysis method, we extracted direct and indirect contri-
butions of genetic factors to plasma metabolite levels. Of 
note, a triglyceride and methyl lysine showed a significant 
connectivity, while the role of PYROXD2 in triglyceride 
metabolism is not yet known.

Our study had some limitations. Firstly, our sample 
size (N = 441) was not sufficient to replicate some of 
previous findings at the stringent statistical threshold of 
p < 3.5 ×  10–12 (= 5 ×  10–8/14,342 features). For instance, 
the ACADS gene encodes short-chain acyl-CoA dehy-
drogenase (SCAD) and genetic variants in this gene are 
associated with mitochondrial fatty acid oxidation func-
tion. More than 55 mutations in the ACADS gene were 
reported in patients with SCAD deficiency (SCADD) 
with increased plasma concentration of butyrylcarnitine 
[40]. In our analysis, butyrylcarnitine level was associ-
ated with eight SNPs in upstream, coding, intronic vari-
ants of the ACADS gene at p < 5 ×  10–8; however, none of 
these loci passed the threshold p < 3.5 ×  10–12. Secondly, 
annotation of features measured by LC-HRMS was not 
complete. A total of 14,342 features were identified with 
the combination of unique m/z, RT, and peak intensity 
in our plasma samples. To reduce false annotations, we 
highlighted significant associations among 891 features 
with high confidence annotations and 2431 features with 
medium confidence annotations according to xMSanno-
tator in addition to 166 identified metabolites confirmed 
with authentic standards. xMSannotator integrates cor-
relation structure of measured features in a dataset with 
multistage clustering and refinement using diverse chem-
ical annotation databases (e.g., KEGG, HMDB, T3DB, 
and Lipid Maps) to reduce false annotations. Therefore, 
some interesting features with significant associations 
require further annotation and identification of chemi-
cal compounds. For instance, a feature (m/z 283.2741, 
RT 27.6) that was associated with the CALN1 and VWDE 
genes was not annotated by xMSannotator with high or 
medium confidence nor identified with authentic stand-
ard. This feature was uniquely mapped to Tridecanol 
(HMDB identifier: HMDB0013316) with exact mass 
(m/z) at 1.02 ppm tolerance; however, further investiga-
tion is required to confirm structure. Lastly, children 
enrolled for the current study included patients with 
rare genetic disorder (e.g., cystic fibrosis) and common 
diseases (e.g., epilepsy, anemia, and diabetes mellitus). 
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Medication history at the time of blood draw for metabo-
lomics profiling was not used.

Conclusions
In summary, we performed the most comprehensive 
analysis to date of the plasma metabolome in a pediatric 
cohort. Our unbiased profiling methods revealed a wide 
range of genetic contributions to metabolites for differ-
ent chemical species as well as complex gene–metabolite 
associations. The developmental trajectory of a biologi-
cal system is shaped by gene–environment interactions 
especially in early life course. Environmental exposures 
of endogenous and exogenous origins modulate health 
and aging trajectory of an individual, while genetic fac-
tors modify the environmental effect. Continuous efforts 
on the chemical identification of significant features in 
HRMS experiments and generating paired genomic and 
metabolomic data in diverse human tissue types across 
age groups are required to understand gene–environ-
ment interaction toward healthy aging trajectories.

Methods
Subjects
Individuals were enrolled in the PrecisionLink Biobank 
for Health Discovery at Boston Children’s Hospital 
(BCH) from January 2016 to November 2019 [41]. The 
participants are enrolled throughout the hospital, across 
diverse clinical settings. Informed consent is obtained 
from all participants enrolling in the Biobank and pro-
vides permission to: (1) access electronic health record 
(EHR) data for research; (2) collect and use of residual 
specimens produced as by-products of routine care; 
and (3) share de-identified data and specimens out-
side of the institution. We collected 441 plasma samples 
from 230 females and 211 males with mean ages 15.7 
and 14.3 years old, respectively (ranges from 4.8 months 
to 60.1  years) (Additional file  3: Table  S2). The Interna-
tional Classification of Diseases (versions 9 and 10) and 
SNOMED CT codes were collected for participants 
from the BCH Cerner EHR database. To comply with the 
Health Insurance Portability and Accountability Act rules 
for protected health information, medical record identi-
fiers and personal information were removed from the 
EHR extracts and universal unique identifiers (UUIDs) 
were assigned to everyone. All analyses were performed 
with UUIDs, age at blood collection, gender informa-
tion, and sample identifiers for plasma and DNA samples, 
which were provided by the BCH Biobank. The study was 
reviewed and approved by the BCH Institutional Review 
Board.

Plasma and genomic DNA samples
Genomic DNA (gDNA) and plasma samples were 
obtained from the PrecisionLink Biobank at Boston 
Children’s Hospital (BCH). Participants are given the 
opportunity to also consent to collection of a 4 mL blood 
sample for research use, from which DNA and plasma 
aliquots are obtained. In conjunction with other sched-
uled clinical laboratories, the whole blood is collected 
from participants in EDTA treated tubes. When received 
in the Biobank Core Lab, the blood is centrifuged at 
2000 × g for 10  min at room temperature. Plasma is 
then aliquoted into 0.5  mL microcentrifuge tubes and 
stored at − 80  °C in the Biobank Core Lab facility until 
requested. gDNA is extracted from the whole blood 
using Gentra Puregene Extraction Kit (Qiagen Sciences 
Inc, Germantown, MD) or Chemagic B5k Extraction Kits 
(PerkinElmer, Waltham, MA) resulting in two 0.225 mL 
aliquots. DNA samples are stored at −  80  °C until 
requested for research use at which point they undergo 
normalization and QC. The PrecisionLink Biobank initia-
tive is approved by the BCH Institutional Review Board 
(protocol number—P00000159).

High‑resolution metabolomics profiling of plasma samples
Plasma samples were thawed and aliquoted at BCH 
Biobank for shipping to Emory University in dry ice 
package. We randomized plasma samples to each batch 
to balance age and sex between batches of HRMS pro-
filing. Plasma samples were extracted by treating 50  μL 
aliquots with acetonitrile containing 14 stable isotope 
internal standards with 100  μL to precipitate proteins. 
Samples were then equilibrated on ice for 30  min and 
centrifuged for 10 min at 13,400 rpm at 4 °C. The super-
natant was transferred to autosampler vials and kept in a 
refrigerated autosampler until analysis. Each extract was 
analyzed in triplicate using a dual column chromatogra-
phy scheme that includes hydrophilic interaction liquid 
chromatography (HILIC; XBridge BEH Amide XP HILIC 
column; Waters, Waltham, MA; 50 × 2.1  mm, 2.5  μm) 
and reversed phase liquid chromatography (RPLC; 
C18 column; Higgins Analytical, Mountain View, CA; 
50 × 2.1 mm, 2.6 μm). The chromatography was coupled 
with HRMS in positive (HILIC) and negative electrospray 
ionization (ESI) modes (RPLC) that enabled an increased 
coverage of the plasma metabolome. Mass spectral data 
were collected with a 5-min mobile phase gradient on a 
Thermo Q-Exactive HF high-resolution mass spectrom-
eter (Thermo Fisher, San Diego, CA) set to collect data 
from m/z of 85 to 1275 at a resolution of 120,000 [17]. 
Raw data were converted to mzXML using ProteoWiz-
ard, and data preprocessing, which included peak detec-
tion, noise filtering, peak quantification and alignment, 
averaging signals of triplicates, peak-matching, and 
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batch effect correction, was completed using apLCMS 
and xMSanalyzer [42, 43]. Raw and processed metabo-
lomic datasets are deposited in the Metabolomics Work-
bench [44] (Study_ID: ST002331, Project_ID: PR001495, 
https:// doi. org/ 10. 21228/ M8GM6Q).

Metabolite identification and annotation
All features were annotated using xMSannotator [16], 
which utilizes a multistage clustering algorithm in order 
to provide confidence scores for annotated metabolites. 
Subsequent identities of features were compared to our 
confirmed library of identified metabolites [17] which 
utilized co-elution relative to authentic standards and 
ion dissociation mass spectrometry (level 1 identification 
by criteria of Schymanski et al. [21]) with a tolerance of 
5 ppm and 30 s. The remaining annotations with high or 
medium confidence provided by xMSannotator stages 
4 and 5 possessed a M −  H/M + H adduct, detected in 
the negative/positive mode, respectively, and were made 
using the KEGG (Kyoto Encyclopedia of Genes and 
Genomes) [45]; HMDB (Human Metabolome Database) 
[46]; T3DB (Toxin and Toxin Target Database) [47]; and 
Lipid Maps [48] databases at 5  ppm tolerance [17]. For 
the significant features without high or medium confi-
dence annotations, we added annotations that had exact 
mass at a 5-ppm tolerance in the HMDB database (level 
5 identification by the criteria of Schymanski et al. [21]).

Genome‑wide genotyping
Illumina Global Diversity Array (GDA) was used to geno-
type 1.83 million variants. This platform is used for the 
All of US program and includes 0.61 million common 
variants and 0.68 million rare variants covering diverse 
race and ethnic groups. More importantly, 0.53 mil-
lion known clinically implicated variants are included 
such that GDA and can be used for monitoring genetic 
risks for various common diseases, pharmacogenom-
ics, and frequently mutated genes in rare disorders and 
cancer. Frozen gDNA samples were thawed for aliquot-
ing and shipping to the Partners Center for Personal-
ized Genomic Medicine (PCPGM) for genotyping using 
GDAs. All samples were quantitated using picogreen to 
assess the concentration of double-stranded DNA. QC of 
the microarrays was carried out by inspecting the Con-
trols Dashboard within GenomeStudio analysis software 
(Illumina, San Diego, CA). These controls monitor inter-
nal spike-in probes at various points of the process and 
allow the QC of sample-dependent and sample-inde-
pendent processes. After validating input of 300  ng to 
each assay, gDNA was amplified using a whole genome 
amplification process. After fragmentation of the DNA, 
the sample is hybridized to 50-mer probes attached to 
the Infinium BeadChip, stopping one base before the 

interrogated base. Single base extension was then car-
ried out to incorporate a labeled nucleotide. Dual color 
(Cy3 and Cy5) staining allowed the nucleotide to be 
detected by the iSCAN reader (Illumina, San Diego, 
CA) and was converted to genotype during analysis with 
GenomeStudio.

Statistical analysis
Features with high coefficient of variation across tripli-
cate measurements and detected in less than 80% of the 
samples were removed prior to statistical analysis. Batch 
effects were corrected using ComBat [49]. The peak 
intensity values were log-2 transformed and adjusted for 
age, sex, and batches of LC-HRMS profiling by taking the 
residual values from generalized linear regression with 
the covariates. For each feature, individuals that were 
outside of three standard deviations from residual mean 
value were excluded to reduce potential spurious associa-
tions with rare variants.

Out of genotype data from 453 individuals and 1.82 
million variants, we used variants and samples that 
passed all the following exclusion criteria: (1) variants 
or samples with missing rate less than 2%, (2) bi-allelic 
variants in autosome with minor allele frequency of 5% 
or greater, (3) variants passing Hardy–Weinberg equilib-
rium test (p value threshold of  10–6), (4) samples without 
excess heterozygosity (within 3 standard deviations from 
average across samples), (5) unrelated samples with pair-
wise King-robust estimator less than 0.177. The final gen-
otype data used in GxMWAS consisted of 441 samples 
and 619,688 variants in autosomes (including 1036 indels 
and 17 tri-allelic SNPs each split into 2 bi-allelic SNPs).

The narrow-sense heritability (h2) of each feature level 
was estimated using genomic related matrix (GRM) 
restricted maximum likelihood (GREML) implemented 
in genome-wide complex trait analysis (GCTA) [22]. 
For each feature, we fitted a generalized linear model 
(--glm) [50] implemented in PLINK 2.00a2.3LM [51] 
with the dosages of minor alleles as independent vari-
ables (additive genetic model) and top 10 PCs as covari-
ates to account for population structure. The gene-level 
enrichment analysis was done for each feature with its 
summary statistics using MAGMA version 1.0 [30]. All 
subsequent statistical analysis was performed using R 
statistical language (version 4.1.2; R Foundation for Sta-
tistical Computing, Vienna, Austria).

Causal network analysis of significant GIMs
We systematically integrated the 29 GIMs and their 
genetic determinants to identify the GIM-causal net-
work at level 0.05 using the G-DAG algorithm [33]. The 
causal Bayesian network is augmented with principles of 
Mendelian randomization (MR). The MR approach is an 

https://doi.org/10.21228/M8GM6Q
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instrumental variable (IV) technique to identify causal 
relationships. The assumptions are.

1. IVs are associated with GIMs.
2. IVs are exogenous variables, not affected by metabo-

lites.
3. IVs do not have pleiotropic effect.

We satisfied the assumption 1 by using the genetic 
determinants of GIMs that are strongly associated with 
GIMs. The assumption 2 is satisfied since the genetic 
variations affect metabolites unidirectionally. The 
assumption 3 is assessed using conditional independ-
ence test embedded in the G-DAG algorithm [33].

The GIM-causal network identified from this 
approach is represented as a directed graph, where the 
direction represents the direction of effect.
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