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Abstract 

Background: Obesity is a complex, multifactorial condition in which genetic play an important role. Most of the 
systematic studies currently focuses on individual omics aspect and provide insightful yet limited knowledge about 
the comprehensive and complex crosstalk between various omics levels.

Subjects and methods: Therefore, we performed a most comprehensive trans‑omics study with various omics data 
from 104 subjects, to identify interactions/networks and particularly causal regulatory relationships within and espe‑
cially those between omic molecules with the purpose to discover molecular genetic mechanisms underlying obesity 
etiology in vivo in humans.

Results: By applying differentially analysis, we identified 8 differentially expressed hub genes (DEHGs), 14 differen‑
tially methylated regions (DMRs) and 12 differentially accumulated metabolites (DAMs) for obesity individually. By 
integrating those multi‑omics biomarkers using Mendelian Randomization (MR) and network MR analyses, we identi‑
fied 18 causal pathways with mediation effect. For the 20 biomarkers involved in those 18 pairs, 17 biomarkers were 
implicated in the pathophysiology of obesity or related diseases.

Conclusions: The integration of trans‑omics and MR analyses may provide us a holistic understanding of the under‑
lying functional mechanisms, molecular regulatory information flow and the interactive molecular systems among 
different omic molecules for obesity risk and other complex diseases/traits.
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Introduction
Obesity is a chronic metabolic disorder mainly char-
acterized by excessive body fat. Body mass index (BMI) 
is widely used in obesity research and clinical diagnosis 
to quantify an individual’s tissue mass. Epidemiological 
studies estimate that the elevated BMI level is a driving 
force for the similarly rapid increase of cardiovascular 
diseases, insulin resistance, type 2 diabetes (T2D), and 

certain types of cancer [1]. Heritability studies have dem-
onstrated a substantial genetic contribution to obesity 
risk  (h2 ~ 40–70%) [2]. Identification of the genetic deter-
minants for BMI could lead to a better understanding of 
the biological basis of obesity.

Most systematic studies currently are focused on sin-
gle to two omics measurements such as at DNA, RNA, 
metabolite levels. Although useful, little knowledge 
has been obtained about the cross-talks between mol-
ecules of various omics levels and the underlying bio-
logical networks that drive complex phenotypes. With 
the advance of emerging high-throughput sequencing 
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technology such as whole genome sequencing (WGS), 
RNA sequencing (RNA-Seq), reduced-representation 
bisulfite sequencing (RRBS) and liquid chromatography–
mass spectrometry (LC–MS), multi-omics data including 
genomics, transcriptomics, epigenomics and metabo-
lomics are rapidly generated and accumulated [3]. As a 
result, more and more researchers are currently working 
on the integration of comprehensive multi-omics data to 
discovery new and meaningful biological knowledge [4, 
5], but those studies focused on obesity are rare.

Peripheral blood monocytes (PBMs) or whole blood 
cells are emerging as a potent source of transcriptomic 
and epigenetic biomarkers of diabetes and obesity and 
their related metabolic alterations [6–8]. Therefore, we 
will use PBMs as an example cell type for illustration for 
this integrative multi-omics study for obesity.

In the current study, we intend to perform systematic 
genetics analysis which integrates genomic, transcrip-
tomic (from PBM), epigenomic (from PBM) and metabo-
lomic (serum) data of BMI—a major index for obesity, to 
identify potential molecular and genomic factors/mecha-
nisms underlying the pathogenesis of obesity at different 
omics level and to re-construct functional module net-
works to discover the potential regulatory patterns for 
obesity. Additionally, we seek to identify the significant 
interactions/networks/causal regulatory relationships 
within and especially those between omics molecules, 
shedding lights into the in  vivo functional mechanisms 
for obesity etiology in humans.

Subjects and methods
The study was approved by Tulane University (New 
Orleans, USA) Institutional Review Board and all partici-
pants were required to sign informed consent documents 
before taking part in the study. A total of 104 premeno-
pausal Caucasian females aged 25–40 years were derived 
from Louisiana Osteoporosis Study (LOS), an ongoing 
cohort recruitment since 2011 [9]. The inclusion and 
exclusion criteria were detailed in our previous studies 
[10, 11]. All the participants completed an interviewer-
assisted comprehensive questionnaire to collect their 
baseline information including demographic character-
istics (age, weight, and height) and life factors (smok-
ing, drinking and exercise, etc.). Weight was measured 
in light indoor clothing using a calibrated balance beam 
scale, and height was measured using a calibrated stadi-
ometer without shoes. BMI was calculated as weight (kg) 
divided by height squared  (m2). For the ease of differen-
tial analysis, the subjects were categorized into normal 
weight group and overweight/obesity group according to 
the WHO criteria.

Peripheral blood mononuclear cells (PBMCs) were 
isolated from fresh blood from each subject using 

Lymphoprep™ (Axis-Shield, Oslo, Norway), PBMs 
were then isolated from PBMCs with Dynabeads® 
Untouched™ Human Monocytes kit (Life Technolo-
gies, CA, USA) using a previously established and rou-
tinely performed protocol [12, 13]. Then genomic DNA 
and total RNA were extracted from the freshly isolated 
PBMs with the AllPrep® DNA/RNA/ miRNA Universal 
Kit (Qiagen, CA, USA) and kept at -80℃ for further use. 
After the collection of whole blood sample, the blood 
was left undisturbed in room temperature for 15–30 min 
for coagulation. Then we centrifuged the blood at 
1000–2000×g for 10 min to remove the clot, the result-
ing supernatant yielded the needed serum. Following the 
centrifugation, the serum was immediately transferred 
into a clean polypropylene tube and stored at − 80 ℃ or 
lower. To systematically illuminate the underlying func-
tional mechanisms of obesity, WGS, RRBS (PBM), RNA-
seq (PBM), and LC–MS (serum) were performed on the 
DNA, RNA, and metabolites, respectively.

WGS, RNA‑seq, DNA methylation and metabolomic 
analysis
The WGS, RNA-Seq and epigenome-wide DNA meth-
ylation profiling (identified by RRBS) were performed 
by Technology Center for Genomics & Bioinformatics 
(TCGB) at University of California, Los Angeles (UCLA). 
Libraries for WGS were prepared with KAPA DNA LTP 
library preparation kit (KAPA Biosystem) on Biomek FX 
Laboratory Automation Workstation (Beckman Coul-
ter). Libraries for RNA-Seq were prepared with KAPA 
RNA Hyper kit with RiboErase (KAPA Biosystem, USA) 
according to manufacturer’s instructions. The detailed 
library construction procedures, library concentration 
and quality measurement, sequencing protocols and epi-
genomic analysis methods were described in our previ-
ous studies [11, 14, 15].

The LC–MS based metabolomics platform developed 
by Dr. Garrett’s lab in the Southeast Center for Integrated 
Metabolomics at University of Florida was used to per-
form the metabolomic analysis of the study. The detailed 
laboratory protocols and metabolomics analyses were 
described in our previous studies [11, 14, 16, 17]. The 
detailed quality control information for the three omics 
were also described in our previous study [11].

Statistical analysis
For RNA-seq data, we first performed data filtering and 
normalization [18], then empirical Bayes method [19] 
was used to fit linear models to identify the differentially 
expressed genes (DEGs) between two groups. Genes with 
adjusted P value ≤ 0.01 and absolute values of log trans-
formed fold changes (|logFC|) ≥ 5 were considered as 
significant genes. Finally, those significant DEGs were 
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subject to the Multiscale Embedded Gene Co-expression 
Network Analysis (MEGENA) [20] to identify functional 
co-expressed gene modules and DE hub genes (DEHGs) 
associated with obesity. MEGENA were implemented 
in four steps: Fast Planar Filtered Network construction 
(FPFNC), Multi-scale Clustering analysis (MCA), Mul-
tiscale Hub Analysis (MHA) and Cluster-Trait Associa-
tion Analysis (CTA). For detailed information about the 
steps, please refer to the method of original MEGENA 
paper. Functional enrichment analysis was performed on 
those significant DEGs to using GO enrichment analysis 
(http:// geneo ntolo gy. org/ docs/ go- enric hment- analy sis/).

For the RRBS data, we adopted logistic regression 
to identify the differentially methylated regions/bases 
(DMRs) of multiple CpG sites between the two groups 
(normal weight group vs overweight/obesity group). 
Logistic P-values were adjusted to FDR-based Q-values 
using the Sliding Linear Model (SLIM) method [21]. 
Methylation regions with Q-value < 0.01 and percent 
methylation difference (PMD) more than 10% were con-
sidered as significant DMRs. Functional enrichment anal-
ysis was performed on the genes those DMRs annotated 
to using DAVID Bioinformatics Resources 6.8 (https:// 
david. ncifc rf. gov/), which provides a comprehensive set 
of functional annotation tools for investigators to under-
stand biological meaning behind large list of genes.

For the LC–MS data, we conducted both partial least 
squares regression-discriminant analysis (PLS-DA) [22] 
and Logistic regression analysis to detect the differen-
tially accumulated metabolites (DAMs) between two 
groups. Metabolites with variable importance in projec-
tion (VIP) more than 1 and logistic P values less than 0.05 
were considered as significant DAMs. Functional enrich-
ment analysis was performed on the identified significant 
DAMs using Metabolites Biological Role (MBROLE) 
2.0 (http:// csbg. cnb. csic. es/ mbrol e2) [23], which has 
been widely used to perform metabolites functional 
annotation and metabolite–protein and drug–protein 
interactions.

Quantitative trait loci (QTL) analysis to generate 
the datasets for mendelian randomization (MR) analysis
To identify genetic variants underlying the variation of 
various omics profiles, we performed QTL analysis by 
“Matrix eQTL” R package [24] to identify the expression 
quantitative loci (eQTL), methylation QTL (meQTL) and 
metabolomic QTL (metaQTL) for multi-omics data indi-
vidually. By performing the association analysis between 
genotype data and RNA expression/DNA methylation/
metabolite data individually, eQTL/meQTL/metaQTL 
datasets were generated for further MR analysis. To 
reduce the computational burden, we only included 
DEHGs, DMRs with Q-value < 0.01 and PMD larger than 

15%, and the significant DAMs for QTL and further MR 
analysis. Given the moderate sample size (n = 104), we 
defined the QTLs that achieve P < 1E−5 as significant 
QTLs.

MR analysis among multi‑omics data
To better understand the crosstalk among the multi-
omics data, we first performed Spearman correlation 
analysis among DEHGs, DMRs and DAMs, and heatmap 
was generated to represent and visualize their correlation 
patterns.

Then we applied the bi-directional MR approach to 
DEHGs and DMRs, DMRs and DAMs, DEHGs and 
DAMs to detect the potential casual pairs among multi-
omics data. To detect the putative causal pairs between 
gene expression and DNA methylation, we analyzed each 
gene-methylation pair twice, defining the exposure as 
either gene expression or methylation. Specifically, we 
first selected eQTLs with P < 1E−5 as IVs, then the effect 
estimates of these eQTLs on DNA methylation were 
extract from the meQTL datasets. When target SNPs 
were not available in the methylation datasets, we used 
proxy SNPs that were in high LD (r2 > 0.8) with the SNPs 
of interest.

Standard inverse-variance weighted (IVW), simple 
median and weighted median [25] approaches were uti-
lized to assess the effect estimates of gene expression on 
DNA methylation. We also applied MR-Egger regres-
sion [26] and mendelian randomization pleiotropy 
residual sum and outlier (MR-PRESSO) analysis [27] to 
evaluate the overall horizontal pleiotropy among all the 
IVs. MR analysis was then performed on DNA meth-
ylation to gene expression as in the bi-directional MR 
analyses. Similar analysis was repeatedly performed on 
gene expression and metabolites, DNA methylation and 
metabolites. To prioritize the sets of the results, any test 
pairs with at least two MR methods showed P < 0.01 was 
considered as significant potential causal signals, and 
0.01 < P < 0.05 was considered as suggestive evidence for 
potential causal association.

Network MR analysis
We then applied the network MR analysis [28] to inves-
tigate whether there was mediation effect in those causal 
pathways. Network MR assumes that the causal effect of 
the exposure (X) on outcome (Y) is partially mediated 
through mediator (M). Therefore, the total effect of expo-
sure on outcome are composed of direct effect and indi-
rect effect. Genetic association between genetic variables 
with exposure  (IVX), mediator  (IVM), and outcome  (IVY) 
could be derived from the linear regression performed 
previously. The significant difference (P < 0.05) between 

http://geneontology.org/docs/go-enrichment-analysis/
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indirect effect and total effect suggests the existence of 
mediation effect.

Results
Our omics workflow was demonstrated in Fig.  1. We 
observed significant difference in BMI and exercise 
between the two groups (P < 0.05), and the detailed infor-
mation was shown in Table  1. Therefore, the following 
analysis for different omics all adjusted for “exercise”. For 
the RNA-Seq data, by fitting the gene expression data 
and BMI group into the linear regression model (adjusted 
for exercise), we identified 214 DEGs (adjP < 0.01, Addi-
tional file  2: Table  S1). By using MEGENA, three scales 
groups (S1, S2, and S3) were identified that had similar 
interaction patterns and shared highly connected hubs 
across different scales. These genes were clustered into 
17 gene modules (Table 2 and Additional file 2: Table S2) 
and 8 genes were identified as DEHGs. The module sub-
network figures (Additional file 1: Figs. S1–S4) were used 
to present the DEHGs of the specific module intercon-
nected with obesity related genes. Modules hierarchy 
plot (Fig. 2) was generated to visualize the module hier-
archical structure. These genes were enriched in obesity-
related terms such as “Glycolysis”, “T cell activation”, 
“Blood coagulation” and “Integrin signaling pathway”. The 

results of GO term enrichment analysis were detailed in 
Additional file 2: Table S3.

By using the threshold of Q-value < 0.01 and PMD 
larger than 10%, we identified 95 DMRs (Additional file 2: 
Table  S4), 35 of them were hyper-methylated regions/
bases (Additional file  2: Table  S5), and 60 were hypo-
methylated regions/bases (Additional file  2: Table  S6) 
when compared with the control group. Then those 95 
DMRs were annotated to 67 nearest genes according to 
the distance to transcriptome start site (TSS) (Additional 
file 2: Table S7). After using a more stringent threshold of 
Q-value < 0.01 and PMD larger than 15%, there were 14 
DMRs remained (Table  3), and they were annotated to 
12 nearest genes. These genes were enriched in obesity-
related terms such as “Cytoplasm”, and “transcription, 
DNA-templated”. The results of were detailed in Addi-
tional file 2: Table S8.

By performing PLS-DA and logistic regression analy-
sis, we identified 12 DAMs for obesity (Table  4). These 
metabolites were enriched in obesity-related terms 
such as “Amino sugar and nucleotide sugar metabolism”, 
“Amino Sugar Metabolism”, “Insulin signaling pathway” 
and “Type 2 diabetes mellitus”. The results of MBROLE 
term enrichment analysis were detailed in Additional 
file 2: Table S9.

Fig. 1 Workflow of the multi‑omics analysis

Table 1 Characteristics of baseline information for all the individuals

Quantitative data (age and BMI) was expressed as mean ± standard error(SE), student t test was performed to compare the difference between two groups

Enumeration data was expressed as number/percentage, χ2 test was performed to compare the difference between two groups

Baseline information Normal weight (n = 52) Overweight/obesity (n = 52) P value

Age (years) 30.98 ± 4.87 32.36 ± 5.42 0.396

BMI (kg/m2) 21.98 ± 1.68 32.85 ± 8.36 < 0.001

smoking (n/%) 17 (32.69) 22 (42.31) 0.198

Drinking (n/%) 47 (90.38) 42 (80.77) 0.195

Exercise (n/%) 44 (84.62) 35 (67.31) 0.029

Milk consumption (n/%) 37 (71.15) 39 (75.00) 0.549

Cheese consumption (n/%) 47 (90.38) 47 (90.38) 0.767
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Bi‑directional mendelian randomization analysis 
among multi‑omics data
Spearman correlation analysis demonstrates signifi-
cant correlation patterns among gene expression, DNA 

methylation and metabolites (Fig.  3). By performing 
association analysis between gene expression, DNA 
methylation, metabolites and genotype data separately, 
we successfully identified 3560 eQTLs (P < 1E−5) for 
the DEHGs, 734 meQTLs (P < 1E−5) for the DMRs, and 
9055 metaQTLs (P < 1E−5) for DAMs.

We identified 7 of the 112 (8 × 14) DEHG-DMR site 
pairs with predicted causal direction from the bi-direc-
tional MR analyses. Within our 7 predicted causal pairs, 
five predicted DEHG to causally influence DMR (Addi-
tional file 2: Table S10 and Additional file 1: Fig. S5) and 
two predict DMR to causally influence DEHG. As an 
example, we highlighted one predicted gene → methyla-
tion causal pair ANO6 → 6.110721178. Elevated ANO6 
expression was significantly associated with increas-
ing 6.110721178 methylation [β = 2.324, 95% CI (0.691, 
3.957), PIVW = 0.005], while 6.110721178 methylation was 
not associated with ANO6 expression (Additional file 2: 
Table S10).

We found 40 of the 168 (12 × 14) DMR-DAM site pars 
with predicted causal direction. Within those 40 observed 
causal pairs, 31 predicted DAMs were significantly asso-
ciated with DMRs, 8 suggested DAMs have suggestively 
causal association with DMRs, and one predicted DMR 
was causally associated with DAM (Additional file  2: 
Table S11 and Additional file 1: Figs. S6–S11). We exem-
plified one predicted causal pair from metabolite to 
methylation here: isobutyrylcarnitine → 6.110721178. 
Increased isobutyrylcarnitine was significantly 

Table 2 Gene modules identified by MEGENA

Module size means the number of genes in each module, module parent means the beginning from connected components of the initial networks, module hub 
means the hub gene in this module, module scale demonstrates that three scales groups (S1, S2 and S3) were identified that had similar interaction patterns and 
shared highly connected hubs across different scales. The numbers inside the parenthesis in column ’module hub’ mean the number of genes directed connected to 
the hub gene

ID Module size Module parent Module hub Module scale Module p value

c1_2 95 c1_1 () S3 < 1e−5

c1_3 29 c1_1 UGGT1 (13) NA < 1e−5

c1_4 90 c1_1 MPEG1 (21), IQGAP1 (19) S3 < 1e−5

c1_5 30 c1_2 LUZP6*(13), ANO6 (12) S3 < 1e−5

c1_6 35 c1_2 PTGS1 (15) S3 < 1e−5

c1_8 12 c1_2 () S3 < 1e−5

c1_10 10 c1_3 () NA < 1e−5

c1_12 64 c1_4 MPEG1 (21), IQGAP1 (19) S2 < 1e−5

c1_13 26 c1_4 () S2 0.04

c1_16 12 c1_5 ANO6(9) S2 < 1e−5

c1_18 18 c1_6 PTGS1 (11), CLU (9) NA < 1e−5

c1_23 52 c1_12 MPEG1 (21), IQGAP1 (17) NA < 1e−5

c1_24 12 c1_12 () S1 < 1e−5

c1_25 12 c1_13 PLCB2*(9) S1 < 1e−5

c1_26 14 c1_13 () S1 < 1e−5

c1_29 25 c1_23 MPEG1 (18) NA < 1e−5

c1_34 21 c1_29 MPEG1 (18) S1 < 1e−5

Fig. 2 Modules hierarchy plot. Notes: Each node is a cluster identified 
by multiscale clustering in PFN. ‘c1_’ means the root node. Node_size: 
the size of the node. node.scaleFactor: scale number to adjust node 
sizes. Node size and label size are proportional to node degree. For 
detailed module clusters and complete list of genes in each module, 
please refer to Additional file 2: Table S2 and Additional file 1: Figs. 
S1–S4
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causally associated with increasing 6.110721178 meth-
ylation [β = 3.25E−06, 95% CI (1.464E−06, 5.032E−06), 
PIVW = 0.0003], while 6.110721178 methylation did not 
show any reverse causal association with isobutyrylcarni-
tine (Additional file 2: Table S11).

We detected 42 of the 96 (8 × 12) DEHG-DAM site 
pairs with precited causal direction. Within our 42 pre-
dicted causal relationships, 12 predicted DEHG to caus-
ally influence DAM and 30 predicted DAM to causally 
influence DEHG (Additional file 2: Table S12 and Addi-
tional file 1: Figs. S12–S17). We demonstrated one of the 
gene and metabolite causal pairs as an illustration of the 
causal relationships. Increased ANO6 expression was sig-
nificantly associated decreasing fructose [β =  − 13.732, 
95% CI (− 23.070, − 4.394), PIVW = 0.004], though there 

was no causal association from fructose to ANO6 expres-
sion (Additional file 2: Table S12).

Network MR analysis result
Our network MR identified 18 causal pairs with 
mediation effect (Table  5), including eight causal 
pathways DAMs → DEHGs → DMRs, four 
DAMs → DMRs → DEHGs causal pathways and six 
causal pairs pathways DEHGs → DAMs → DMRs. There 
were 20 biomarkers involved in those pathways. We 
highlighted one of those causal pathways: isobutyrylcar-
nitine_ANO6_6.110721178. We first assessed the causal 
association between metabolite level of isobutyrylcar-
nitine and expression level of gene ANO6, it turned out 

Table 3 DMRs with Q‑value < 0.01 and PMD larger than 15%

Chr Start End Strand P value Q value Meth diff

17 75,284,971 75,284,971 + 1.76E−126 5.21E−123 18.64026

6 163,743,051 163,743,051 − 2.32E−55 1.54E−52 17.65037

11 129,594,021 129,594,021 − 1.30E−103 2.50E−100 17.05906

19 54,545,186 54,545,186 + 8.37E−79 9.76E−76 17.03821

9 137,131,610 137,131,610 + 2.93E−138 1.04E−134 15.9169

6 110,721,154 110,721,154 − 4.40E−55 2.84E−52 15.36733

6 110,721,178 110,721,178 − 1.65E−48 7.75E−46 15.18883

6 11,072,119 110,721,139 − 5.45E−55 3.46E−52 15.10461

8 28,227,281 28,227,281 − 2.27E−44 8.99E−42 − 15.2398

20 47,132,784 47,132,784 − < 0 < 0 − 15.9148

X 86,937,439 86,937,439 − 8.41E−104 1.66E−100 − 16.45169

12 12,226,467 122,264,647 + < 0 < 0 − 20.04055

5 355,049 355,049 − 1.31E−185 7.78E−182 − 21.24946

X 6,608,536 6,608,536 + 8.05E−205 7.16E−201 − 21.88445

Table 4 Differentially expressed metabolites between two groups

* Denotes the novel metabolites discovered in the current study

Metabolites Estimate SE P value VIP value

Glucosamine/Mannosamine 0.93 0.33 0.00 1.07

Ursodeoxycholic Acid (UDCA) 0.61 0.21 0.00 1.82

3‑(2‑hydroxyphenyl) propanoate 0.58 0.22 0.01 1.67

Plasmenyl‑LysoPE (P‑18:1) − 0.63 0.25 0.01 1.56

N‑methyl‑D‑aspartic acid* − 0.55 0.22 0.01 1.43

Sphingosine (d18:1) 0.53 0.21 0.01 2.12

2‑deoxy‑D‑galactose (fructose/glucose) − 0.65 0.26 0.01 1.35

Phenylalanyl‑Threonine/Threoninyl‑Phenylalanine 0.52 0.22 0.02 1.37

Indole‑3‑acetate* − 0.51 0.22 0.02 1.07

Isobutyrylcarnitine − 0.51 0.24 0.03 1.07

N‑Acetylneuraminate 0.55 0.26 0.04 1.35

Aspartate − 0.54 0.26 0.04 1.17
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higher isobutyrylcarnitine level was causally associated 
with the decreasing expression of gene ANO6 (P = 0.003), 
however the reverse did not suggest any causal associa-
tion (P = 0.447). Then we tested the association status 
between expression level of gene ANO6 and methylation 
level of the region 6.110721178, and the results showed 
that elevated ANO6 expression level was causally associ-
ated with increasing methylation of region 6.110721178 
(P = 0.005), but the reverse MR showed no association. 
Additionally, the mediation analysis showed significant 
difference between indirect and total effect (P = 0.012), 
which suggests that the causal association between 

isobutyrylcarnitine and 6.110721178 was partially medi-
ated by gene ANO6.

Discussion
In the current study, we first identified significant DEGs, 
DMRs, and DAMs for obesity in single omics indi-
vidually. Then, by integration of the multi-omics data 
(DEHGs, DMRs and DAMs) for obesity using MR anal-
ysis, we observed significant correlation among gene 
expression, DNA methylation and metabolites and iden-
tified several putative causal pathways among the various 

Fig. 3 Correlation pattern between A DEHGs and DAMs, B DEHGs and DMRs, and C DMRs and DAMs



Page 8 of 13Zhang et al. Human Genomics           (2022) 16:15 

omics molecules. Finally, the application of network MR 
enabled us to detect 18 causal pathways with mediation 
effect among different omics.

Implications of the identified DEHGs on obesity
For the identified DEHGs for obesity, there were six pre-
viously reported genes (UGGT1, ANO6, MPEG1, PTGS1, 
CLU and IQGAP1) and two novel genes (LUZP6 and 
PLCB2) for obesity. Genes UGGT1 and ANO6 were pre-
viously reported to be associated with BMI in gluteal 
subcutaneous adipose tissue (GSAT) [29], UGGT1 was 
also reported as hip-associated gene in GSAT [29]. Stud-
ies in animal model showed significant difference in gene 
expression of MPEG1 between normal and obese mice 
[30]. Expression of gene PTGS1 was reported up-regu-
lated in the intestinal mucosa of the obese rats compared 
to lean rats [31], and study reported that PTGS1 expres-
sion showed a significant positive correlation with BMI 
[32] in human subcutaneous tissue. Microarray analysis 
in female subcutaneous adipocytes found that CLU gene 
expression was upregulated in obese versus lean patients 
[33], and serum levels of gene CLU was elevated during 
T2D and coronary heart disease [34]. Studies reported 
that knockdown of IQGAP1 significantly reduced the 
ability of glucose to stimulate insulin secretion from 
β-cell [35]. The rest two genes LUZP6 and PLCB2 were 
not implicated earlier in obesity or related diseases. 

However, an extracellular transcriptome study in saliva 
demonstrated that four extracellular RNA biomarkers 
including LUZP6 had the potential to distinguish high 
and low insulin resistance participants [36]. Gene PLCB2 
was shown to exhibit diagnostic value for hepatocellular 
carcinoma [37], PLCB2 also have an important role in 
the progression of Alzheimer’s disease and enriched in 
another neurodegenerative disorder Huntington’s disease 
[38]. Furthermore, studies with established evidence have 
reported the associations between cognitive dysfunction, 
insulin resistance, hepatocellular carcinoma and obesity 
[39, 40].

Implications of the identified DMRs on obesity
For the identified DMRs, we focused on the 12 near-
est genes they were annotated to. For those 12 genes, 
six of them (DDO, SEPT9, TMEM45B, RXRα, ZNF395 
and AHRR) were previously reported to be implicated 
in the obesity or related diseases and the rest six were 
novel (PACRG , LINC00494, KLHL4, DTX1, VCX3A and 
VSTM1). Specifically, according to the genotype–pheno-
type association of dbGap in Harmonize dataset (http:// 
amp. pharm. mssm. edu/ Harmo nizome/), DDO was one 
of the genes that were associated with obesity. A GWAS 
in a cohort of 1,895 females reported that the varia-
tion in gene SEPT9 was correlated with BMI [41]. Gene 
TMEM45B was proved differentially expressed in white 

Table 5 Network MR results for the causal pathways

Causal pairs among different omics β Se P value

Metabolomic → Transcriptomic → Epigenomic

Isobutyrylcarnitine ANO6 6.110721178 − 3.486E−05 1.555E−05 0.012

Plasmenyl‑LysoPE ANO6 6.110721178 − 0.007 0.003 0.013

3‑(2‑Hydroxyphenyl) Propanoate ANO6 6.110721178 − 3.811E−05 2.146E−05 0.038

Ursodeoxycholic Acid (UDCA) ANO6 6.110721178 − 7E−4 3E−04 0.013

Isobutyrylcarnitine CLU 9.13713161 − 3.04E−07 1.730E−07 0.040

Plasmenyl‑LysoPE CLU 9.13713161 − 2E−05 1E−5 0.023

Indole‑3acetate MPEG1 6.163743051 − 9.1E−06 4.360E−06 0.018

3‑(2‑Hydroxyphenyl) Propanoate MPEG1 6.163743051 − 6.5E−07 3.155E−07 0.020

Metabolomic → Epigenomic → Transcriptomic

UDCA 6.163743051 ANO6 − 2.185E−4 9.377E−05 0.010

Glucosamine 6.163743051 ANO6 − 2.951E−05 1.650E−05 0.037

Glucosamine 6.110721139 PTGS1 − 6.491E−05 3.219E−05 0.022

3‑(2‑Hydroxyphenyl) Propanoate 6.110721139 PTGS1 − 1.774E−05 9.524E−06 0.031

Transcriptomic → Metabolomic → Epigenomic

CLU Aspartate 9.13713161 8.439E−4 4.23E−4 0.023

CLU N‑Acetylneuraminate 9.13713161 − 3.87E−4 2.0E−4 0.031

MPEG1 Phenylalanyl‑Threonine 6.163743051 − 6.41E−4 3.61E−4 0.038

UGGT1 N‑methyl‑D‑asparticacid 6.110721154 − 2.29E−4 1.33E−4 0.042

UGGT1 UDCA 6.110721178 − 1.60E−4 6.914E−05 0.010

UGGT1 UDCA 6.110721154 − 1.00E−4 4.77E−05 0.018

http://amp.pharm.mssm.edu/Harmonizome/
http://amp.pharm.mssm.edu/Harmonizome/
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adipose tissue between autism mouse model and wild 
type mouse model [42]. Also, research suggested that 
the methylation of gene RXRα was a diagnose biomarker 
for childhood obesity [43]. While the rest genes were 
not implicated earlier in the obesity or related diseases, 
previous research suggested their roles in other complex 
diseases. Genes PACRG  and VSTM1 were reported to be 
involved in the Parkinson [44] and rheumatoid arthritis 
[45], respectively. Studies already showed that overweight 
and obesity might be potential risk factors for Parkinson 
disease [46] and rheumatoid arthritis [47]. SNPs located 
in intron of DTX1 were implicated in the process of 
immune response to HBV vaccination. Studies demon-
strated LINC00494 (long intergenic non-protein coding 
RNA 494) was enriched in prognosis-related long non-
coding RNAs (lncRNAs) module that were involved in 
chemokine signaling pathway, acute myeloid leukemia 
and pathways in cancer [48]. SNP variants in gene KLHL4 
were associated with bone density [49] and HDL choles-
terol [50]. VCX3A was reported to be associated with an 
abnormal neurocognitive phenotype, which plays a role 
in neurogenesis regulation [51]. Meanwhile, another gene 
PNPLA4 in the same region was related to human obesity 
[52]. Although those genes were not directly implicated 
in obesity, previous studies showed their associations 
with other complex diseases that may be related to obe-
sity risk [39, 53].

Implications of the identified DAMs on obesity
As for the identified metabolites for obesity, previous 
studies reported ten of them (Table  5) were related to 
obesity, two were novel (Indole-3-acetate and N-methyl-
D-aspartic acid (NMDA)). Oral treatment by glucosamine 
(GLC) in high-fat diet-induced obese rats demonstrated 
GLC’s effect in preventing body weight gains [54]. Studies 
of the pathways involved in the obesity and metabolic dis-
orders have showed that ursodeoxycholic acid (UDCA) is 
used for the treatment of diseases related to liver disor-
ders, especially cholestasis, obesity and lipemic frames 
[55], and studies in mouse model of diet-induced obesity 
also illustrated the effective of UDCA in the treatment of 
obesity by alleviating metabolic dysfunction [56, 57]. Pre-
vious studies involving LC–MS revealed that the sphin-
gosine level in the adipose tissue was increased in obese 
mice compared to lean mice, furthermore, the plasma 
level of sphingosine was also indicated elevated in obese 
mice [58]. Established evidence reported that high con-
sumption of beverage rich in fructose was directly associ-
ated with the obesity development and its complications 
[59, 60]. A study performed in Turkish population illus-
trated that the obesity prevalence in children with phe-
nylketonuria and hyperphenylalaninaemia who received 
phenylalanine-restricted diet treatment was higher than 

that in the normal population [61]. Metabolomic profil-
ing in both obese adults and children reported elevated 
isobutyrylcarnitine level in plasma in obese than that in 
lean subjects [62]. Metabolite aspartate was also reported 
as BMI-associated metabolite [63]. N-acetylneuraminate 
belongs to sialic acids (SAs) and takes up the highest 
content of them, SAs were widely common in human 
tissues and fluids, and research showed that increased 
level of SA was positively associated with coronary artery 
disease (CAD) [64]. While for metabolite 3-(2-hydroxy-
phenyl)propanoate, microbiome study in obese chil-
dren and adults showed that propanoate was one of the 
metabolites that were associated with obese individuals 
[65], meanwhile, randomized control study of human 
diet revealed that propanoate level in plasma decreased 
with the decrease of the weight and it could be used as an 
independent predictor for insulin sensitivity [66]. As for 
plasmenyl-LysoPE, plasmenyl was highly accumulated 
in nerve, immune and cardiovascular systems, study 
reported it has the potential to protect the cells from 
reactive oxygen damage [67], and metabolomic profiling 
in obese males reported LysoPE was one of the DAMs 
[68]. To our acknowledge, this study for the first time 
reported the association of indole-3-acetate and NMDA 
with obesity. Metabolomics analysis demonstrated that 
indole-3-acetate was reported associated with carotid 
intima-media thickness, a validated surrogate marker 
of atherosclerotic vascular disease [69]. Furthermore, 
indole-3-acetate was reported could attenuate indicators 
of inflammation in macrophages and cytokine-mediated 
lipogenesis in hepatocytes [70]. NMDA receptors are 
responsible for the majority of excitatory synaptic trans-
mission in the central nervous system, which have been 
implicated as mediators of neuronal damage caused 
by excess glutamate in multiple neurologic disorders, 
including stroke, epilepsy, trauma, and neurodegenera-
tive disorders [71].

Potential causal regulatory relationship 
between significant omics profiles
In this analysis, by innovatively using the bi-directional 
MR principle, we identified significant causal pairs 
between DEHGs and DMRs, DMRs and DAMs, DEHGs 
and DAMs. For these gene expression-methylation causal 
pairs, five of them have evidence of gene driving meth-
ylation and the rest two the reverse, which demonstrates 
that we cannot simply assume methylation always drives 
changes in gene expression in a model, this findings may 
represent true causal relationships of gene expression on 
methylation or methylation on gene expression, but are 
in themselves not proof. Our findings demonstrated the 
complex relationship among gene expression, methyla-
tion and metabolite, highlighting that the different omics 
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data for complex disease do not simply model one driving 
another. Therefore, it would make more sense to iden-
tify the causal pathways among different omics rather 
than simply focus on the global relationship of different 
omics, which enable us to integrate data from different 
omics levels to reveal their interrelation and combined 
potential functional influence and pathways on the dis-
ease processes. The application of QTL analysis and the 
integration with MR approach enabled us to detect the 
specific causal pathways among different omics, which 
will provide us novel insights into etiology and potential 
mechanisms underlying complex diseases.

In the current study, our Spearman correlation analy-
sis first demonstrated the significant correlation between 
biomarker pairs of different omics, then the bi-directional 
MR analysis further assessed their causal association. The 
results were partially validated by the previous evidence 
of their associations with obesity or related diseases. For 
the 20 biomarkers included in the mediation causal pairs, 
17 of them were reported related to the development of 
obesity or related diseases, which were illustrated ear-
lier. The rest three biomarkers, NMDA, indole-3-acetate 
and 6:163,743,051 (PACRG-AS1), although they were not 
implicated in the obesity, research showed their signifi-
cance with other complicated obesity-related diseases. 
The results demonstrate the feasibility of the application 
of MR and network MR in multi-omics data integra-
tion, which deepen our understanding of the cross-talks 
between different omics of obesity and provide us novel 
insights into discovering the genetic flow information in 
the pathological of obesity.

Strengths and limitations
Our study has several strengths. First, the application 
of MEGENA [20] in identifying the gene co-expression 
network not only helped us to prioritize meaningful 
and relevant co-expressed gene clusters for obesity and 
meanwhile reduces the computational burden for further 
QTL analysis. Secondly, MR analysis has been extensively 
applied to multiple integration analysis of multi-omics 
data such as gene expression and phenotypes, methyla-
tion and phenotypes, metabolite and phenotypes, gene 
expression and methylation. However, there was no 
application in detecting causal relationship among multi-
omics data sets from gene expression, methylation, and 
metabolites simultaneously. Finally, and particularly, 
the application of network MR enables us to detect the 
mediation effect among the causal pathways, which pro-
vide us novel insights in unraveling the complex network 
underlying the mechanisms of obesity, and the biomark-
ers included in those pathways may serve as potential 
targets for future precision medicine. To our knowledge, 
this is the first reported study to integrate multi-omics 

data of obesity from same population using MR and net-
work MR. We successful identified 18 mediation causal 
pathways among different omics, which demonstrates the 
feasibility of MR approach and its effectiveness in helping 
develop mechanistic insight into the etiology of obesity 
and other complex diseases.

There are several limitations in the current study. First, 
our sample size is relatively moderate so that our findings 
may be limited to those molecules and pathways with 
most significant effects. Second, current study subjects 
only included Caucasian females, which may not general-
izable to male and other ethnicities. Last, further experi-
mental validation is needed to confirm the biological 
functional of the identified potential causal pairs in this 
study.

Conclusions
With the increasing availability of multi-omics or multi-
layer datasets for complex traits or diseases, the integra-
tion analysis of those datasets would be more helpful and 
powerful in solving the underlying mechanisms. By the 
application of MR in multi-omics datasets, we were able 
to untangle some of the crosstalks among various omics 
molecules and the underlying biological networks that 
drive the obesity and other complex phenotypes.
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