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Abstract

Contemporary biomedical databases include a wide range of information types from various observational
and instrumental sources. Among the most important features that unite biomedical databases across the
field are high volume of information and high potential to cause damage through data corruption, loss of
performance, and loss of patient privacy. Thus, issues of data governance and privacy protection are essential
for the construction of data depositories for biomedical research and healthcare. In this paper, we discuss
various challenges of data governance in the context of population genome projects. The various challenges
along with best practices and current research efforts are discussed through the steps of data collection,
storage, sharing, analysis, and knowledge dissemination.
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Background
Overview
Databases are both the result and the instrument of
research. From the earliest times, assembling collections
of samples and stories was essential for any research pro-
ject. The results of research feeding back into the libraries
and collections create a positive feedback in the accumula-
tion of knowledge limited only by the technological plat-
form for storage and retrieval of information. The modern
times did not change the principle but further emphasized
it with the advent of computers, mass information storage,
and high-throughput research instrumentation. Modern
biomedical databases may vary in size, specialization, and
type of access but with a few exceptions are voluminous
and include complex data from multiple sources. Argu-
ably, the first integrated database of the population scale
was initiated in Iceland when Decode Genetics started in
1996 [1]. This new generation of integrated biomedical
databases incorporates both phenotype (medical records,
clinical studies, etc.) and genotype (variation screening at

first, now increasingly shifting to whole exome and whole
genome sequencing [2, 3]). The project started by Decode
has generated one of the best resources for discovery in
biomedical sciences and inspired development of multiple
populational and national genomics projects, also feeding
into integrated databases. Genomics England [4], Human
Longevity [5], All of US (formerly known as Precision
Medicine Initiative) [6], China’s Precision Medicine Initia-
tive [7], Korean Reference Genome Project [8], Saudi
Human Genome Program [9], and Qatar Genome [10]
programs are just a few recent examples of active
large-scale projects generating enormous databases of
complex biomedical information. Large-scale population
genomics projects proliferating in the second decade
of the twenty-first century show enormous diversity in
goals and strategies. The Icelandic genome program has
evolved from the largest population genetics study of the
time and has primary objectives in advancing biomedical
research. China’s Precision Medicine Initiative is one of
the most ambitious programs with an aim to sequence
100 million whole human genomes by 2030. The objective
is to improve disease diagnosis, develop targeted treat-
ments, and provide better wellness regimes. Genomics
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England is an augmented (100,000) research cohort
study that implies sampling of the most common dis-
eases and reflecting the genetic diversity of the popu-
lation in Great Britain. The All of Us project has
similar objectives and aims to collect a sufficiently
large cohort (1,000,000). The numbers alone have a
great ameliorating effect on statistical power of asso-
ciation studies. Deep phenotyping and follow-up sam-
pling in All of Us are aiming to develop the new
level of precision in diagnostic and treatment of mul-
tiple diseases. The declared aims of the Human
Longevity project are even more focused on a specific
range of age-associated diseases. To achieve its goals,
Human Longevity plans to recruit about 1,000,000
donors. The Saudi Human Genome Program has a
very different focus; it aims to develop effective
methods and facilities for early diagnostics and treat-
ment of heritable diseases. Such goal does not require
the genome sequencing effort on the same scale as
All of Us or Genomics England. The program imple-
ments only a small number of whole genome sequen-
cing and up to 100,000 whole exome sequencing to
collect the data reflecting local genetic variation and
design a microarray chip for cost-effective mass neo-
natal screening. In contrast, the national genome pro-
gram in Kuwait requires complete sampling of the
entire population including nationals and non-citizen
residents because the principal goal, according to the
recently adopted DNA Law [11], is to counteract ter-
rorist activity by precise unequivocal identification of
every human being. The Qatar Genome Programme
(QGP) aims to integrate genome sequencing informa-
tion of all Qatari nationals with electronic medical re-
cords (EMRs) and results of clinical studies to
provide quick and precise personalized diagnostic and
treatment of diseases. The goal is to provide a solid
basis for the biomedical research in the country.
These biomedical databases are often viewed as a plat-

form for regional and worldwide collaborative research
projects. Both the construction of these resources and
serving them to a growing research community (national
and international) present a significant challenge toward
preserving the privacy of the participants.

Particularities of genomic data
In 2008, James Watson, a co-discoverer of the double-
helix DNA model, opted to release his sequenced gen-
ome in a public database with the exception of his
APOE gene (which has been associated with Alzheimer’s
disease). However, a statistical model was later devel-
oped that inferred the missing gene with a high degree
of confidence [12]. This incident conveys one of many
new privacy concerns that genomic data raises and that
are difficult to deal with:

� First, genomic data is highly distinguishable. There
is confirmation that a sequence of 30 to 80 SNPs
could uniquely identify an individual [13]. Genomic
data is also very stable [14]. It undergoes little
changes over the lifetime of an individual and thus
has a long-lived value (as opposed to other bio-
medical data such as blood tests which have ex-
piry dates).

� Second, genetic data provides sensitive information
about genetic conditions and predispositions to
certain diseases such as cancer, Alzheimer, and
schizophrenia. If breached, such information can be
stigmatizing to participants and can be used against
them in employment and insurance opportunities,
even if these pre-dispositions never materialize.

� Third, genetic data does not only provide
information about the sequenced individuals but
also about their ancestors and off springs. Whole
genome data increases our ability to predict
information related to relatives’ present and future
health risks, which raises the question as to the
obligation of a consented participant towards their
family members (the authors in [15] describe
privacy risks to family members of individuals who
shared their genetic data for medical research).

� Finally, and most concerning, there is great fear
from the potential information hidden within
genomic data [16]. As our knowledge in genomics
evolves, so will our view on the sensitivity of
genomic data (in other words, it is not possible to
quantify the amount and sensitivity of personal
information that can be derived from it).

Paper outline
In this paper, we discuss various privacy and govern-
ance challenges encountered during the construction
and deployment of population-scale sequencing pro-
jects. The various challenges are discussed through
the stages of:

1. Initial data collection,
2. Data storage,
3. Data sharing (utilization), and
4. Dissemination of research findings to the

community.

At each stage, we discuss current practices and chal-
lenges, as well as contemporary research efforts, with a
particular interest in data sharing for research purposes
[17]. We provide examples from a diversity of large-
scale population sequencing projects and reflect on their
scope and data governance models.
Note that the above division is simplistic as the differ-

ent stages are not mutually exclusive; however, it makes
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for a simpler and more organized presentation of the
different ideas.

Data collection
The data for the different genome projects is sought
from the community and results from the efforts on part
of the community. Thus, it is important to consult with
the concerned population to establish the basic princi-
ples for data collection and research oversight. To
achieve that, a community engagement model should be
defined. The model should establish the basic principles
for data collection and research oversight such as:

(i) An advocating technique for advertising the project
to the community and raising the number of
individuals who are aware of the project. Such
technique should strive to reach different elements
within the society, provide clear dissemination of
risks and benefits, and establish methods for
recurrent evaluation of the community attitudes
and understanding of the project.

(ii) Enrollment criteria to define the basis for enrollment
(should it be disease-based or volunteer-based) as
well as the acceptable age for volunteers.

(iii)An enrollment process to define the scope of
subjects’ consent (a general opt in/out or an
informed consent) and to set a clear boundary
between research and clinical practice, and

(iv)An institutional and community-based oversight
process to discuss and establish oversight for the
program by the community and by independent
ethics committees. The scope of these committees
should include oversight on data repositories,
oversight on research studies and oversight on any
changes to the protocol (data use agreements,
communications, etc.).

In many cases, regulations require the organization to
establish an independent institutional review board,
(IRB). The IRB’s mandate (at the data collection and
storage phases) is to review and approve all proposals re-
lated to the data collection protocol and to approve/
manage the participant’s consent process for the data
collection activity.
One of the most comprehensive community engage-

ment models is that of the Electronic Medical Records
and Genomics (eMERGE) network [18]. eMERGE, a
National Institute of Health Initiative, is a consortium
of nine US medical research institutes (including
Vanderbilt Genome-Electronic Records (VGER) project
and North Western University biorepository (NUgene))
that combine DNA repositories and EMR systems for
advancing genetic research. In the case of VGER [19],
the community engagement model was established in

consultation with the community through surveys,
focus groups (from different ethnic, racial, and socio-
economic backgrounds), posters, and in-person inter-
views. These activities helped in shaping the principles
of data collection, data sharing, and community over-
sight. The established oversight bodies include The
Vanderbilt IRB, the medical center’s ethics committee,
and several newly established ethics, scientific, and
community advisory boards. The community advisory
board’s role is to evaluate the projects’ adherence to the
established security and privacy measures, to voice the
concerns/issues of the community with regards to the
use of their genetic information for research, and to
monitor any social/ethical issues arising in the process
and help in providing the necessary measures to resolve
them [19].
In the case of the NUgene project (North Western

University biorepository, another eMERGE network
member), the NUMC (Northwestern Medical Center)
scientific, medical, and ethics community; the North
Western University IRB; community researchers; exter-
nal advisors; and public health experts were all involved
early in establishing issues of consent for genome-wide
association studies (GWASs), means to inform partici-
pants about data sharing, means to keep participants
informed about research activities, and means to en-
gage participants and learn their concern regarding
data sharing.
For the case of the Qatar Genome Programme,

oversight is provided mainly by an IRB and an access
committee (involving prominent members of the
community). Although some effort was exercised to
publicize the long-term goals and benefits of the pro-
ject and to get the community involved, the major re-
cruitment incentive is the comprehensive health
check provided as part of the sample collection visits
by the Qatar Biobank [10]. The appointment takes
two 2 days and includes an extensive set of studies
and measurement. The measurements include height,
weight, blood pressure, grip strength, waist and hip
measurements, and body fat composition. The study
proceeds to lung function, ultrasound carotid artery
scan, 12-lead electrocardiogram, full body iDXA scan,
artery stiffness measurement, and treadmill walking
test. Finally, samples of blood, saliva, and urine are
collected and analyzed.
Most large-scale population genomics programs col-

lect some phenotypic data; the type and volume adjusted
to the goals of the study. For instance, the Estonian
Genome Project data collection is performed by the
Estonian Biobank. The emphasis is on collection of per-
sonal data by computer-assisted personal interview
(CAPI) within hours of appointment at a doctor’s office.
The CAPI includes personal and genealogical data (place
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of birth, ethnicity, family history of medical conditions,
etc.), educational and occupational history, and lifestyle
data (physical activity, dietary habits, smoking, alcohol
consumption, etc.). During the appointment, additional
anthropometric, blood pressure, and heart rate data are
collected along with the blood sample. The particular
feature of the Estonian Genome Project is its strong as-
sociation with electronic health records providing access
to the past and current health status of each sample
donor. However, the phenotype study is by far less inten-
sive than that of the Qatar Genome Programme. Saudi
Human Genome Program [20] collects virtually no indi-
vidual phenotype data since this information is not es-
sential to the goals of the program. In the most extreme
example, the Kuwait DNA Law [11] showed no interest
in phenotype data; mandatory DNA sampling from all
residents and visitors also implied no need for consent
on the part of the sample donor. Remarkably, after the
international outcries pointing out potential abuse of
such law, local protests, and challenge from the lawyers,
the law has been amended in its most controversial
parts.
Protecting participants’ data from privacy breaches

is a key issue to the success of any genome project.
Prospective participants in research studies ranked
privacy as one of their top worries and as a major de-
terminant toward their participation in a study [21–
23]. Privacy is a socially bound concept; it is deeply
affected by language, religion, traditions, and cultural
expectations. A simple question such as “how much
rent do you pay?” is considered inappropriate in some
societies while perfectly normal in others. In the Arab
world, for example, personal reputation and family
ties are among the highest moral values. As explained
by Abokhodair and Vieweg [24], “membership in a
family or tribe are of the utmost importance; there is
no individual separate from a family … asserting one’s
individuality is viewed in a negative light”; in fact, in-
dividuals often rely on their family members and
communities for significant decisions, while in west-
ern societies, asserting one’s individuality is cele-
brated. For these reasons, privacy breaches from
genetic testing may differ in their impact on individ-
uals from different backgrounds. Thus, it is important
to investigate and understand the cultural values of
concerned communities and to tailor the specifics of
data collection and data sharing accordingly. Unfortu-
nately, privacy is still treated as a universal notion,
and little research has been done to understand the
cultural impact.
In the next two sections, we discuss current practice

and challenges in protecting participants’ sensitive data
while in storage (data storage) and while in use (data
sharing).

Data storage
EMR and Biobank data are highly sensitive and require
significant storage space (the total length of an individ-
ual genome is over 3 billion base pairs). As such, one of
the biggest challenges for a data warehouse is to decide
where and how to store this data.

Where to store the data?
Data storage presents a significant technological chal-
lenge for many large-scale genome projects. The total
volume of deep whole genome sequencing (WGS) with
raw read, aligned, and variant calling data can reach 0.
5 TB per genome. Phenotyping, imaging, and omics data
add additional volume. The specific number may vary
widely depending on the types of data collected. Ques-
tionnaires and physiological tests, even as comprehen-
sive as those conducted by Qatar Biobank, when
collecting samples for the Genome Sequencing Program,
add only a small percent to the total volume. Digital im-
ages can potentially add large volumes on the same scale
as genome sequencing (i.e., on TB scale). However, the
real imaging data associated with a particular sample
donor in current projects is relatively small and does not
exceed gigabyte (GB) scale. Omics data (such as gene ex-
pression, methylation, or metabolomics) can also be as
large as genome sequencing data. Some of such data is
produced using similar next-generation sequencing tech-
niques that result in the same volumes of raw data,
which can be stored to reproduce the downstream ana-
lysis. Multiple tissue samples can be taken for omics
analysis from different organs of the same donor, at dif-
ferent times or in different disease states. This poten-
tially can multiply the volume of data by as many times
as more samples are taken. However, at this time, this
kind of data is rarely added in significant amounts due
to the high costs of high-throughput methods. WGS
data remains the most voluminous part of genomic data-
bases. With reserve copy and redundancy, the overall
data volume requires petabytes of storage space even for
relatively small population studies with tens of thou-
sands of samples. Data compression and selective saving
of key data files (while other types of data can be repro-
duced from initial and intermediate data) can reduce the
requirements. Nevertheless, the overall data storage de-
mand in population sequencing is enormous. In the
QGP example, it has been originally estimated as
300 PB. The challenge is further compounded by
requirement of fast access to individual data files, high-
throughput access to multiple genomes in research
cohort studies, and long-term storage keeping the data
safe and actively used for decades ahead. On the other
hand, the price of storage has a hard ceiling dictated by
the progress in sequencing technology: the price for data
storage per gigabyte should not exceed (and better be
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significantly lower than) the price of sequencing of the
same data from a stored sample. Such demands and lim-
itations make engineering the data storage facility ex-
tremely challenging.
In general, the data can be outsourced to a cloud pro-

vider or stored on a private—locally managed—cloud.
The former approach obscures the complexity of tech-
nology but demands highly developed broadband net-
work infrastructure and limits the control over data
security and access performance. The overall perform-
ance of a cloud-based data storage solution in a large-
scale project is gated by the availability of broadband
infrastructure. Nevertheless, when local conditions offer
adequate answers to security and broadband infrastruc-
ture challenges, cloud solution can be very attractive.
Genomics England with a goal of 100,000 WGS and full
complement of phenotype data is the most brilliant
example [25]. The latter approach can be more expen-
sive in terms of engineering, capital expenses, and run-
ning costs. In the QGP example, the storage is
engineered as a complex solution that involves multiple
redundancy and multi-tier storage on different informa-
tion carriers ranging from flash drives to tape libraries.
However, the storage service is provided in a form of a
single name space private cloud (see overview in Fig. 1).

In other examples of local storage solution for large-
scale genomic and biomedical data, the technical details
of storage architecture are rarely detailed and rely on the
local policies of the data center for data integrity, secur-
ity, and safety. Examples of such projects include the Es-
tonian Genome Project and Saudi Human Genome
Program [26, 27].
It is increasingly advocated that individuals should be

the guardians of their own biomedical data. As such,
they should have the ability to access, modify, and grant
access (to family, health authorities, or research facilities)
as they see fit. However, numerous challenges (in terms
of data storage) have to be solved before such model can
be adopted, such as:

1. Where should individual data be stored
(individual’s private PC or on a private access-
controlled cloud?), and how to ensure the security
of the data in either case?

2. How to grant access to different authorities and
how to manage such access?

3. Should the data be backed up, where and how?
4. Does the individual have the right to withdraw

authorized access or to delete their data, and how
can either be done [28]?

Fig. 1 Secure storage strategy for a large-scale population sequencing project. All data is stored in a secure data center with partial mirroring for
research on site, partial archival mirroring for backup at geographically distant remote sites within the country, and additional mirror copy for
protection against unforeseeable rare catastrophic (aka “Black Swan”) events.
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How to store the data?
To minimize the risk of harm, most research platforms
store de-identified clinical and biobank data while
retaining the link between both data sources (the de-
identified EMR data and the biobank data). This can be
achieved by applying the following two operations:

1. The first operation (known as pseudonymization)
identifies a stable and unique identifier(s) (such as
Social Security numbers and national IDs) that is
included in both data sources and replaces it with a
unique random ID or pseudonym (refer to Fig. 2).
The pseudonym can be obtained by encrypting or
hashing one or several identifiers. Decode genetics
uses a symmetric encryption algorithm (TwoFish)
to convert the Social Security number (SSN) to an
alphabet-derived string. VGER hashes the medical
record number using the public hashing algorithm
SHA-512.

2. The second operation removes all uniquely
identifying information (such as names, record
number, and emails) from the structured data and
masks all unique identifiers from the unstructured
data (such as doctors’ notes), (refer to Table 1 for
examples of unique identifiers). Additional fields
can be also removed from the data for added
privacy; the VGER project, as an example, removes
all geographic information smaller than a state and
all elements of dates (except year) directly related to
the individual (such as date of birth and date of
death) and shifts all hospital visit dates by a random
value between 1 and 364 days (the shift being the
same across the record of the same patient to
preserve temporal analysis).

Multiple aspects have to be considered when designing
the pseudonymization operation; these include:

1. Ensuring that each subject is assigned the same
random ID (pseudonym) across different data
sources. This consistency will ensure that data
belonging to a particular subject will always be
mapped to one record.

2. Deciding whether the pseudonymization process
should be reversible or not. Reversible systems
allow reverting back to the identity of the subjects
through a process called de-pseudonymization. For
the case of Decode Genetics and QGP, reversibility
was chosen because communication with patients
was deemed to be a foreseen possibility (to commu-
nicate novel treatments and/or possible preventative
measures). While for the VGER case, reversibility is
not possible as the link between the pseudonym
and the medical record number was not
maintained.

3. When communication is forecasted, a secure de-
pseudonymization mechanism should be specified;
the mechanism should define (i) the cases for
which de-identification can occur, (ii) the bodies
that can initiate re-identification requests, (iii)
those that rule and regulate these requests, and
(iv) the actual re-identification mechanism.

Privacy breaches can occur if the data is leaked to an
unauthorized party. Such leakage can happen if (i) the
stored data is hacked/handled recklessly or if it is (ii)
shared with a pretentious/irresponsible third party. After
applying the pseudonymization process, the data re-
mains vulnerable to de-identification attacks (in other
words, although de-identification makes re-identification
harder, it does not eliminate the risk). Thus, a strong
security layer is needed to ensure that unauthorized in-
dividuals cannot access/modify the data. Encryption
alone is not an adequate security solution, particularly
for genomic data. As explained in [28], encryption
schemes gradually weaken in the long run, while the in-
formation hidden inside a genome remains stable and is
better interpreted with time. Thus, if encrypted genomes
are available to an unauthorized third party, the party
will be able to decrypt it with time (40–50 years).
Commercial cloud providers (such as IBM and

Amazon) claim to employ foolproof security, but their
models are not shared publicly and thus cannot be
learned and evaluated. Security of the privately held
infrastructure and private clouds depends on the profi-
ciency of system administrators and security specialists

Fig. 2 De-identification of clinical data
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employed by the custodian organization. In some cases,
like the Qatar Genome Programme, geographic location
and state-regulated data access may provide additional
protective layer against sporadic attacks and “social
engineering” hacks. However, the ability of genomic data
storage to withstand a determined and competent inva-
sion is yet to be tested.

Data sharing
Electronic medical records (EMRs) hold diverse clinical
information about large populations. When this infor-
mation is coupled with genetic data, it has the potential
to make unprecedented associations between genes and
diseases. The incorporation of these discoveries into
healthcare practice offers the hope to improve healthcare
through personalized treatments. However, the availabil-
ity of such data for widespread research activities is
dependent on the protection of a subject’s privacy.
Current technological methods for privacy preservation
are outdated and cannot provide protection for genomic
and longitudinal data (EMR).

Access mechanisms and privacy
Data sharing mechanisms can be categorized into two
broad categories: open-access and controlled-access.
While both were widely used for regulating genomic
data sharing, open-access datasets have been used in
many more studies per year [29]. Open-access models
either operate under a mandate from participants (who
want to publish their genomic data in public platforms)
or under the assumption that the shared data is de-
identified and possibly aggregated [30]. However, as
demonstrated by multiple recent studies, the risk of
re-identification is strongly present. It was shown, in
multiple independent studies, that it is possible to
learn the identities of people who participate in
research studies by matching their data with publicly
available data [31]. In a recent study [32], the authors
showed that they can infer the identity of 50 anonym-
ous male subjects whose Y-chromosome has been
sequenced as part of the 1000 Genomes Project. The
researchers were not only able to discover the iden-
tities of these anonymized research participants but
also their family members using available/public

pedigrees. In response to this study, the NIH removed
the age information from the project’s database. In
another recent study, [33, 34], the authors reported
that they can confirm whether a person participated
in a genome-wide association study, by using infor-
mation from the person’s DNA sample, “even if the
study reported only summary statistics on hundreds
or thousands of participants” [31]. In response, the
NIH shifted to a controlled access mechanism. In
fact, currently, most human genome projects use
controlled-access mechanisms.
The personal information derived from genomic data

(and EMR data) can be very damaging to the partici-
pants. It can be used against them to limit insurance
coverage, to guide employment decisions, or to apply
social stigma. In [35], the authors report on a case of
genetic discrimination by a railroad company. The case
occurred in 2002 when the company forced its em-
ployees to undergo a genetic test; employees who
refused to participate in the test were threatened with
disciplinary actions. The company was later forced (in
an out-of-court settlement) to compensate 36 of its em-
ployees. That is hardly a consolation because if such
genetic data was obtained from online sources or brea-
ched through illegal means, the company may have been
able to get away with its discrimination practices.

Regulations
In many countries, the use of sensitive human-subject
data for research purposes has been studied extensively
from the legal aspect. Resulting legislations aimed to
ensure that private information is properly used and
adequately protected when disclosed for research pur-
poses [36, 37]. The legislations (such as the Common
Rule [36], Health Information Portability and Account-
ability Act (HIPAA) [38], and EU data protection direct-
ive [39]) generally permit data sharing under one of the
following guidelines:

G1.For the use of identifiable data, an approval from an
Institutional Review Board (IRB) is required. To
approve data requests, IRBs require:
a. Informed consents from the participants for the

specific data use, or
b. When consents are deemed impractical, IRBs

can grant data access if the study accrues more
benefit than risk. Such decision requires a
thorough and lengthy evaluation of each data
access request from the IRB part.

G2.For adequately de-identified data, researchers can
be exempt from IRB approval. The adequacy of the
de-identification is generally established by the IRB
or by pre-approved policies such as the United
States HIPAA privacy rule [37].

Table 1 Examples of unique identifiers

Uniquely identifying fields Remarks

National ID (or SSN)

Name Names of patients and caregivers

Email

Source ID Hospital/Biobank-assigned IDs

Passport number

Exact address

Dankar et al. Human Genomics  (2018) 12:19 Page 7 of 15



Guideline G2 depends on the availability of robust de-
identification techniques, but as current techniques are
outdated, and unable to deal with genetic and EMR data
(as evident from the privacy breaches cited earlier), G2
cannot be adopted. The Vanderbilt genome project is
the only project we are aware of that was ruled by
Vanderbilt IRB to be a “non-human subject data” as it
was deemed to be properly de-identified. However, given
the potential impact of the project on the community,
guidelines adhering to G1.b were enforced.
Guideline G1.a requires informed consent from partic-

ipants. The problem with such requirement is that data
collectors have to forecast all possible uses of the data
and create a comprehensive consent detailing the bene-
fits and risks related to all different data uses. Something
that is not easily achievable. In fact, most biobanks col-
lect consents in the form of opt in/opt out [19]. The is-
sues/challenges in implementing proper informed
consent will be discussed in depth later in this section.
Almost all existing biomedical data warehouses that

house (non-aggregate) genetic data coupled with EMR
data follow guideline G1.b. These warehouses lightly de-
identify their data and regulate investigators’ access to
the data through an IRB [18, 19, 40]. Only researchers
with studies that involve less risk than benefit are
allowed access to requested data and only after they pass
a thorough identity check. However, IRB procedures are
extensive and can obstruct timely research and discover-
ies [41–43]. Studies on platforms that rely on IRB for all
data accesses reveal unsatisfied users. The application
process is strenuous and approvals take a long time
often delaying project initiation significantly [43, 44].
In Qatar, as an example, access to the biomedical

data collected in Qatar is governed by the QSCH
“guidelines, regulations and policies for research in-
volving human subjects”, which adheres to guideline
G1.b. A recently formed IRB will regulate all accesses
to the research data and services by all research insti-
tutes within Qatar and outside.
With such massive mandates, a principal feature for

IRBs is to have the capacity to foster timely research and
discoveries. Data application processes and approvals
should be smooth and should not delay project initiation
significantly. Thus, the traditional “IRB-based” data shar-
ing will produce unsatisfied users.

Methods under investigation
The inadequacy of current de-identification methods and
the delays in IRB processes prompted privacy experts to
seek new solutions. Rapid progress is taking place in priv-
acy research in the biomedical area, driven by the need to
protect and benefit from the large biomedical data ware-
houses being built worldwide. The novel methods can be
divided into two main categories, legislative and technical:

(i) Legislative: Legislative methods define privacy rights
and responsibilities. Research in this area aims to
understand and define individuals’ privacy
perspectives and expectations and to update policies
and laws that govern data sharing. Genetic data
introduces a difficult and unique regulatory
situation (with respect to data collection laws and
data sharing laws) that is not found with other
types of health data [16]. So, until effective privacy
protection solutions are made into law, scientists
and civil right advocates are calling for the adoption
of anti-genetic discrimination laws to mitigate the
effect of genetic data breaches. An example is the
Genetic Information Non-discrimination Act
(GINA) adopted by the US government in 2008.
GINA forbids discrimination by insurers or em-
ployers on the basis of genetic information. The
problem with such regulations is that they are
enforced only when discrimination on the basis of
genetic information is proven, which necessitates
the difficult task of proving malicious intentions.

(ii) Technical: Technical controls aim to create data
sharing systems/methods that fulfill the
requirements specified in privacy legislation.
Current technical approaches to privacy, such as
de-identification, are not effective in the genomic
context (in fact, the genome is itself an identifier
and as such cannot be de-identified (yet) while
retaining its utility), thus the need for innovative
methods to deal with our new data realities. We
classify current research in privacy-preserving
mechanisms into three categories: process-driven
mechanisms, risk-aware systems, and consent-based
systems. In process-driven mechanisms, such as dif-
ferential privacy and cryptographic techniques, the
dataset is held by a trusted server, users query the
data through the server, and privacy is built into the
algorithms that access the data. Risk-aware systems
aim at speeding the IRB processes through partial/
full automation, and consent-based systems aim to
empower participants by allowing them to control
how and by whom their data can be used. This is
being done through the introduction of novel dy-
namic consent mechanisms.

In what follows, we briefly describe recent efforts
within each of the three technical categories.

Dynamic consent
Consent-based mechanisms provide data subjects with
control over who can access their stored data/specimens,
for what purposes, and for how long. Thus, a researcher
requesting access to data will receive the data records
for which the consent is fulfilled.
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The current (mostly paper-based) consent process is
static and locks consent information to a single time
point (typically during sample collection) [45], requiring
all future data usages to be specified at the time of initial
consent. This is not feasible with current (multi-purpose
and evolving) biomedical data warehouses. The current
process also requires limiting the amount of information
conveyed to participants to ensure that their consent is
informed (i.e., the educational program), since individ-
uals can only absorb limited information at any one
time. Re-contacting participants to obtain additional
consents and/or to provide additional education mate-
rials is arduous, time-consuming, and expensive. More-
over, it can have a negative impact on the participants
and on the enterprise.
Active research is underway to overcome this problem.

It attempts to provide consent dynamicity to make it
easier on the participants and data holders to continu-
ously provide/update consent information. The authors
of [46] are working on ways to represent and manage
consent information. They focus on defining the differ-
ent dimensions of a consent. Such dimensions include
(i) the characteristics of the institutions that can access
the patient’s data, (ii) the level of details that each insti-
tution can access, and (ii) the type of research allowed
on the data (all possible uses of the data). The authors’
approach is to codify the different consent dimensions.
The benefit of the codification “is to provide a common
language to capture consented uses of data and speci-
mens” and to “select those data for the investigator’s
study that are compliant with the subjects’ consented
uses and the investigator’s permissions.” Thus, given a
particular study, the characteristics of the study could be
matched against the subjects’ codified consent to deter-
mine the data subset that conforms. In [47, 48], the
authors discuss several challenges in designing dynamic
consents, particularly, participant’s consent withdrawal
and its implications. It is worth noting that some com-
mercial sequencing companies, such as 23andme [49],
already provide a limited form of dynamic consent
models through secure online portal systems. Such sys-
tems allow users to fill/change their consent information
at their own will.
Additional aspects that need to be resolved are con-

sent withdrawal, continuous participant education, and
the cultural aspect of the consent:

� Consent withdrawal: Withdrawal is an essential
motivator for research participation; thus, research
participants must be allowed to withdraw their
participation at any time without any penalties.
However, withdrawal is complicated by the fact that
participants’ samples/data may already have been
shared by other research organizations. Current best

practices recommend that any leftover specimens be
discarded and that medical data no longer be
updated or used but that shared samples and data
do not necessarily need to be revoked [50]. It is
important for the consent process to highlight these
issues and to make sure that participants understand
the limitations of consent withdrawal. Additionally,
more investigation should be done around different
forms of withdrawals to understand their impact on
the willingness to participate and to update best
practices accordingly.

� Continuous participants’ education: Biomedical
sciences are complex and are evolving very fast,
which warrants the need for continuous participant
education.

� Cultural aspect: The purpose of informed consent is
to give the right of self-determination to individuals
based on complete understanding of risks and bene-
fits of research participation and without any inter-
ference or control by others. However, the right of
self-determination is deeply affected by culture
(some communities value the relationship with fam-
ily members and turn to them for support when
making critical decisions), and thus, consent should
be adapted to the specifics of the underlying culture
in terms of information sharing and disclosure [51].

Risk-aware access control
The risk of granting data access to a user depends on
the characteristics of the request. For example, as stated
in [52], “access to highly sensitive data at the data-
holder’s location by a trusted user is inherently less risky
than providing the same user with a copy of the dataset.
Similarly, access to de-identified clinical data from a se-
cure remote system is inherently less risky than access
to identifiable data from an unknown location.” Risk-
aware access control tries to quantify the risk posed by a
data request and to apply mitigation measures on the
data to counter the posed risk.
Risk aware access control received growing attention

in the past few years. Several of the studies attempted to
quantify/model privacy risk, both from the participants’
perspective and the data holder’s perspective. In [53],
Adams attempts to model users’ perceptions of privacy
in multimedia environments. He identified three factors
that determine users’ perceptions of privacy: information
sensitivity (user’s perception of the sensitivity of the
released information), information receiver (the level of
trust the user has in the information recipient(s)), and
information usage (costs and benefits of the perceived
usages). Lederer [54] uses Adams’ model as a framework
for conceptualizing privacy in ubiquitous computing
environments in addition to the Lessig model [55] for
conceptualizing the influence of societal forces on the
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understanding of privacy. These efforts concentrate on
privacy quantification from the participant perspective
rather than the data holder.
Barker at al. [56] introduce a four-dimensional model

for privacy: purpose (data uses), visibility (who will ac-
cess the data), granularity (data specificity), and reten-
tion (time data is kept in storage). Barker et al.’s model
was later used by Banerjee et al. [57] to quantify privacy
violations. Along the same lines, and in multiple con-
secutive studies [58, 59], El Emam et al. defined three
criteria that contribute to privacy risk; these are users’
motives, the sensitivity of the requested data, and the
security controls employed by the data requestor. The
authors state that, according to their long experience in
private data sharing [58, 60–62], these are the main
criteria used (informally) by data holders.
Recently, in [52, 63], the authors defined a conceptual

risk-based access model for a biomedical data ware-
house; the model defines the risk posed by data requests
using four dimensions:

1. Data sensitivity, or the extent of privacy invasion
that would result from inappropriate disclosure of
the requested data,

2. Access purpose, or the usages for which the data
was requested,

3. Location of the investigator’s institution, which is
critical for checking the privacy legislation (if any)
that applies at the data requester’s end and whether
the same laws are enforceable, and

4. User risk, which measures:
a. The user’s institution ability to secure the data

(the research institution to which the user is
affiliated). This is evaluated by looking at the
privacy practices followed/enforced within their
headquarters and

b. The risk associated with the particular user/
requestor; it is measured by tracking whether
the user caused any past inconveniences.

Once calculated, the risk is fed into an access control
decision module. The decision module imposes mitiga-
tion measures to counter the posed risk. The defined
data-sharing mechanism would impose more mitigation
measures on requests of higher sensitivity. The mitiga-
tions could manifest as reductions in the granularity of
the data (de-identification) and/or as restrictions on
when and how a user can access the data. The imple-
mentation of this model still requires significant efforts
toward (i) assigning sensitivities to the different data
attributes, (ii) assigning a score to institutions’ privacy
and security practices (such as certifications), and (iii)
creating universal user records for storing data breach
information.

The issue of assigning sensitivity to data attributes is
gaining more consideration. In [64], the authors define a
method to detect privacy-sensitive DNA segments in an
input stream. In [65], the authors present a privacy test
to distinguish degrees of sensitivity within different attri-
butes recognized as sensitive.

Secure multiparty computation
Secure multiparty computations (SMCs) are an attractive
approach that allows a researcher to run a function on
data owned by multiple parties (each holding a fraction of
the data to be analyzed). The calculation is carried out on
the overall dataset without any party having to reveal any
of their own raw data. Such scenario can be particularly
useful for cross-institutional studies (or even cross-
countries studies) particularly when no site has enough
data to conduct the study in question (for example, studies
on rare diseases).
Figure 3 illustrates the SMC concept. In the figure, a

researcher wants to run a computation f over the private
inputs of three remote databases (data1, data2, data3)
while keeping these inputs private. The different parties
are allowed to exchange messages with each other and
with the researcher. However, such messages are
encrypted so as to prevent the different parties from
learning any private information through interaction.
SMC is gaining more popularity in the biomedical

domain. SMCs are supported by robust mathematical
proofs demonstrating their ability to securely protect
privacy and thus proving their ability to support data
sharing without fear of privacy abuse. In [66, 67], the
authors designed a secure linear regression using homo-
morphic encryption for a multi-hospital quality improve-
ment study. In [68], a secure genome-wide association
study (GWAS) was designed using homomorphic

Fig. 3 Framework for the secure multiparty computation
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encryption, and in [69], a GWAS protocol was designed
using secret sharing. In [70], the authors use garbled cir-
cuits to perform metagenomics analysis.
In general, the protocols for secure computation have

achieved outstanding results; it has been shown that any
function (no matter how complex) can be computed se-
curely. Efficiency however is the major drawback of
these computations; they are much more complex than
regular protocols (that do not provide any security) [71].
The complexity is driven by the extensive message pass-
ing between the involved parties as well as the crypto-
graphic functions employed. Recently, the authors in
[72] presented a fast and secure computation for linear
regression over distributed data based on secure matrix
multiplication. And, the authors in [73] designed
another efficient secure multiparty linear regression
protocol; their method was based on mathematical re-
sults in estimation theory. It remains to be seen whether
these methods are generalizable to other estimators.

Dissemination of findings
Prior work demonstrated that in order to affirm the
value of research participation and contribute to public
education, it is important to have a mechanism for dis-
seminating research findings to the public. This will
keep the community aware of how their participation is
facilitating research and improving knowledge in the
biomedical field.
The mechanism should also tackle the issue of dissem-

inating individual research findings to specific partici-
pants. The recommendations governing the return of
individual results are usually driven by the psychological
harm that could affect the subjects from knowing a re-
sult weighted by the benefits in learning it. As such, rec-
ommendations are usually aligned with returning
“clinically actionable” results, that is, results that are
considered scientifically valid and that constitute valu-
able information for the recipient, i.e., results associated
with some kind of preventive/cautionary strategy.
For example, a finding of deleterious mutations in the

BRCA1 or BRCA2 genes associates diagnosed women
with high frequency of developing breast or ovarian can-
cer. Such valid findings help the participants choose to
undergo more screening (yearly mammograms, yearly
MRI), frequent clinical breast screenings, or bilateral
risk-reducing mastectomy which is known to reduce the
risk of cancer up to 95% [74–76].
Another example concerns the incidence of mutations

in chromosome 12 in the gene coding for phenylalanine
hydroxylase (PAH). The mutation may result in the
absence of or a defect in PAH enzyme. Phenylketonuria
(PKU) can be prevented if PKU is diagnosed soon after
birth; children can be placed on diets low in phenylalan-
ine and the detrimental effects of accumulated

phenylalanine are avoided. Such highly valuable informa-
tion for the recipient might prevent severe mental re-
tardation as a result of PKU.
Other findings might not put the participants at risk

of developing a disease but could give them the neces-
sary information to guide some of their life choices; an
example is whether the participant is a carrier for
albinism.
The American College of Medical Genetics and Gen-

omics (ACMG) published a policy statement in 2013
specifying the mutations that should be sought and re-
ported back to the participants (in the context of clinical
sequencing). ACMG updates these recommendations
annually.
Although the ACMG recommendations were put forth

by experts in the field, these underwent a thorough
deliberation process and were reviewed (before publica-
tion) by external geneticists; they were criticized for ex-
cluding the community from the discussion [77]. In fact,
there is a growing push to empower members of the
public regarding genetic research in general and regard-
ing the return of individual results to research partici-
pants in particular. Empirical studies have shown that
the majority of participants would like to learn a broader
array of genetic results than what is recommended and
that they would like to be given the opportunity to
decide on that matter [78]. This however necessitates
the design of an educational and dynamic consent
process to capture the informed (and fluctuating)
choices of participants with regards to returning their
interpreted data and to continuously educate partici-
pants (refer to the “Regulations” section). Such individ-
ual consent coupled with educational material could be
provided to participants through a secure online portal
system for them to complete at their own pace and as
the need arises. This allows consent documents to be
tied to real events as they occur in the data life cycle,
rather than requiring all consent issues to be defined at
the beginning of the study. Thus, for example, as new
information is generated that changes a variant’s status
from ambiguous to actionable, additional educational
programs and consent documents can be created to
allow participants to decide if they want to receive infor-
mation about the variant and/or to allow that informa-
tion to be transmitted to their physicians.
Another difficult issue at the core of information dis-

semination is that of interpretation of the genome
sequence information. Interpretation requires the stor-
age of additional information in a form that is easily
understood by medical doctors (and other caregivers). It
also necessitates the continuous updating of this infor-
mation with any relevant findings.
A table summarizing several characteristics of select

genome projects is presented at the end of the
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manuscript (Table 2). For every project, it indicates the
target number of genomes to be sequenced, the number
of genomes sequenced to date, the project’s context, the
initiation date, the data access model (open versus con-
trolled), the consent process, whether it supports notifi-
cation (or dissemination) of relevant clinical data, and
whether a de-identification mechanism is applied.

Conclusion
Biomedical sciences have been evolving faster than the
societies’ ability to cope with them. On one hand,
current technical approaches to privacy are not adequate
for modern biomedical data, and on the other hand,
privacy laws have not been updated to deal with the spe-
cial features of genomic data. As a result, common prac-
tice for biomedical data sharing is either rule-based or
relies on an IRB for data-sharing decisions. These pro-
cesses lack a clear and quantitative measurement of priv-
acy risks.

Moreover, calls for participants’ empowerment and
data ownership are increasing. Data ownership gives
the right to individuals to be the guardians of their
own data, allowing them to access their data, modify
it, set access rules, and modify the rules at will. In-
formed consent is believed to grant such right of self-
determination to the individuals by specifying how
they like their data to be accessed (data sharing) and
what findings (from their data) they would like to re-
ceive back (data dissemination).
However, we cannot talk about participants’ empower-

ment without talking about culture and education. As
mentioned earlier in the paper, the right of self-
determination is deeply affected by culture. More studies
are needed to understand the role of religion, cultures,
and traditions in constructing norms around privacy and
self-determination.
On the education front, more effort should be made to

(continuously and dynamically) educate the public and

Table 2 Characteristics of selected genome projects. In opt-out consent process, consent is presumed (for clinical data and left-over
hospital samples) with an opportunity to opt out. Opt-out is usually coupled with paper-based consent for individuals who want to
volunteer samples at the biobank. In local access model, researchers are not allowed to download the data; they can only access it
on the data holder’s site. – indicates missing information, Intra-country indicates that data is not allowed to leave the country
(collaborations should be done through a local researcher)

Projects Declared
target
#genomes/
exomes

#Genomes
sequenced
to date

Context Start
date

Data access model Consent process Notification
of relevant
data

De-identification
process

Human
Longevity

1000,000 WGS – Research 2013 Controlled paper based Yes Yes

All of US 1000,000 WGS 0 Research 2017 Multi-tier (open to controlled),
based on risk of request

Dynamic consent Yes Yes

Korean
Genome
Project

1000 WGS
for 2016
10,000 WGS
for 2018
50,000,000 WGS
for 2030

1722 Research 2012 Open – – Yes

QGP 300,000 WGS 4000 Research 2013 Controlled (multi-ethics/
review boards)

Paper-based
(11 simple questions)

Yes Yes

Estonian
Genome
Project

– 52,000a

samples
Research 2000 Controlled (multi-ethics/

review boards
broad paper-based
consent

Yes Yes

Saudi
Human
Genome
Program

100,000 WES – Research,
diagnostic
screening

2013 Controlled Informed Paper
based consent

Yes Yes

Decode
Genetics

300,000 WGS
(with imputation)

160,000 Research 1996 Controlled (intra-country) Opt-out/ paper-based
consent

Yes Yes

The Faroe
Genome
Project

50,000 WGS – Research 2011 Controlled (multi-ethics/
review boards)

Informed consent
(one for each
research project)

Nob Yes

Genomics
England

100,000 52,065 Research 2015 Controlled (access
committee)

Paper-based Yes Yes, coupled
with local
access

aThe number of biological specimens collected up to date
bUpon participation in a research study, subjects may opt to receive notification about different genetic results that may be revealed
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inform them about the great benefits arising from shar-
ing their data and the potential risk and damage that
could result on the individual and their close relatives
should their information be breached.
On another related topic, that of genomic medicine,

advancements are needed on many fronts to integrate
genetic knowledge into medical practice. On one
hand, consent issues regarding dissemination of find-
ings should be resolved, and on the other hand, issues
that require development are (i) genetic knowledge
representation and the technical limitations of EMR
systems, (ii) the lack of genetic training programs for
practitioners, and (iii) the difficulty in interpreting
genetic results (due to their probabilistic nature and
their dependency on phenotypic data).
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