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Whole-genome sequencing targets
drug-resistant bacterial infections
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Abstract

During the past two decades, the technological progress of whole-genome sequencing (WGS) had changed the fields
of Environmental Microbiology and Biotechnology, and, currently, is changing the underlying principles, approaches,
and fundamentals of Public Health, Epidemiology, Health Economics, and national productivity. Today’s WGS
technologies are able to compete with conventional techniques in cost, speed, accuracy, and resolution for
day-to-day control of infectious diseases and outbreaks in clinical laboratories and in long-term epidemiological
investigations. WGS gives rise to an exciting future direction for personalized Genomic Epidemiology. One of
the most vital and growing public health problems is the emerging and re-emerging of multidrug-resistant
(MDR) bacterial infections in the communities and healthcare settings, reinforced by a decline in antimicrobial
drug discovery. In recent years, retrospective analysis provided by WGS has had a great impact on the identification
and tracking of MDR microorganisms in hospitals and communities. The obtained genomic data are also important for
developing novel easy-to-use diagnostic assays for clinics, as well as for antibiotic and therapeutic development at both
the personal and population levels. At present, this technology has been successfully applied as an addendum to the
real-time diagnostic methods currently used in clinical laboratories. However, the significance of WGS for public health
may increase if: (a) unified and user-friendly bioinformatics toolsets for easy data interpretation and management are
established, and (b) standards for data validation and verification are developed. Herein, we review the current
and future impact of this technology on diagnosis, prevention, treatment, and control of MDR infectious bacteria
in clinics and on the global scale.
Introduction
Human genomics is inseparably linked to the genomics of
bacteria. Bacteria share a long history with humans and
play a major role in our life [152, 200]. Beneficial utilization
of bacterial products can provide key solutions to many
pressing problems on the planet, from environmental
pollution to human diseases. Investigation of bacterial
pathogens remains agenda priority mainly due to two
additional reasons: (i) over 13 % of the world’s deaths are
related to bacterial infectious disease (including respiratory
diseases and tuberculosis (TB)) every year [79, 250], and
(ii) the growth of ancient pathogen re-emergence is driven
by steadily increasing resistance to multiple widely used
antimicrobial agents [59, 60, 249]. Despite the importance
and utility of bacteria, until quite recently, little was known
about their genomic structure.
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During the last two decades, bacteria genomics is rap-
idly changing, mostly through the evolution of whole-
genome sequencing (WGS) technologies. Recent technical
advantages significantly reduced the cost of WGS and im-
proved its power and resolution. Since WGS tools (both
chemistry and bioinformatics-wise) are changing rapidly,
we will not dwell in the details of individual technologies
and equipment. The variety and applicability of the major
high-throughput sequencing platforms are well presented
in several reviews (e.g., [149, 199, 263]).
The advent and ever-growing use of the novel WGS

technologies resulted in a rapid intensification in the
scope and speed of the completion of bacterial genome
sequencing projects. This explosion in bacterial genom-
ics has greatly expanded our view of the genetic and
physiological diversity of bacteria. To date, over 39,000
genome projects have been started, approximately 3,000
microbes’ whole-genome sequences were completed and
published [134, 181, 229], and more than 500 new spe-
cies are being described every year [68, 112]. However,
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most of these projects were driven by the potential prac-
tical applications of the investigated microorganisms and
thus missed most of the microbial diversity on the planet
[133, 134, 180].
Although researchers have only scratched the surface

of microbial biodiversity, the information gained has
already resulted in the discovery of large numbers of
pathogenic bacteria in humans. WGS technologies
granted access to potential virulence determinants, dis-
ruptive targets, candidate drug compounds [85], mech-
anisms of pathogenicity, drug resistance and spread
[62], and their evolution in pathogens. In addition,
WGS analysis provided information about uncultured
or difficult-to-grow bacterial strains isolated from clin-
ical specimens [15]. Knowledge of the enormous range
of microbial capacities and functional activity can ad-
dress many epidemiological questions and will have
broad and far-reaching implications for personalized
and public healthcare in the future. In this field, poten-
tial applications of WGS can be essential for:

i. Detection, identification, and characterization of
infectious microorganisms

ii. Design of novel diagnostic assays for laboratory use
iii. Assessment of multidrug resistance (MDR) or

virulence repertoires in pathogens, as well candidate
antimicrobial compounds in beneficial
microorganisms

iv. Monitoring the emergence and spread of bacterial
infectious agents in different healthcare settings
[46, 69, 126]

The WGS technology is very likely to become an alter-
native to the traditional methods of fighting DR bacteria.
Even today, this technology is already used globally as an
addendum to complement conventional laboratory ap-
proaches (microscopy, pathogenic tests, mass spectrom-
etry, conventional molecular diagnostics, techniques for
vaccine and antibiotic design) in routine clinical work-
flow and scientific investigations [93, 96, 149]. In the fu-
ture, WGS may simplify the diagnostic laboratory
workflow and sample trace, as well as reduce the num-
ber and type of collected biological specimens [11, 46,
126, 138, 201]. Deploying WGS into individual genome
sequencing (IGS) technology has great potential to be-
come a part of routine personalized clinical practice
(e.g., TruGenome Clinical Sequencing tests™ by Illumina
Clinical Services Laboratory; Complete Genomics Plat-
form™ by Complete Genomics BGI, Helicos Helicope™
by SeqLL; Personal Genome Project) [92]. It is further
expected that WGS will permit a deep understanding of
infection mechanisms, allow for more rational prevent-
ive measures [24], and reduce the risk of unnecessary
infection-control interventions [228].
The growing incidence of bacterial resistance to a
broad range of antibacterial drugs in hospitals and com-
munities is a major public health threat today and a
compelling reason for WGS application. MDR pathogens
complicate efforts of infection control and result in con-
siderable morbidity and mortality around the world
[111, 131, 217]. Today, MDR infections are recognized
as multidimensional global challenge by many health
organizations [26, 232, 251]. This complex problem
requires comprehensive measures to be solved [42]. It
was postulated that effective problem-solving strategies
should include: (i) revealing and monitoring infectious
agents, (ii) tracking antibiotic resistance, (iii) developing
new antimicrobial drugs, (iv) providing rational anti-
microbial stewardship program in healthcare institutions
in order to avoid inappropriate or excessive antibiotic
use, and (v) developing unified toolsets and standards
for effective worldwide data management [42, 221, 224].
Taking into account the growing concern about

emerging infections, in this review, we detail the main
uses and hurdles of WGS technologies in clinical prac-
tice and public health with regard to MDR bacterial
infections.

Main directions of WGS applications in MDR bacterial
infections (review scope)
There are numerous possible applications of WGS in
dealing with infectious disease of MDR bacteria. WGS
can be used as a primary tool for:

i. Detection of multidrug susceptibility
ii. Monitoring MDR evolution and transmission

dynamics of MDR pathogen
iii. Diagnosis and control of MDR infections locally and

regionally
iv. Development of new tests and assays for accurate

and rapid MDR bacterial diagnostics in clinics and
points-of-care

v. Discovery of novel antibacterial drugs and
therapeutics and assessment of their preventability

Each of these tasks is important for clinical and public
health and requires methods with different levels of typ-
ing resolution. Theoretically, this problem can be ad-
dressed by reliable, quick, and low-cost WGS technology
in the near future.

Detection of MD susceptibility
Recently introduced into routine clinical microbiological
analysis, WGS has had a great impact on the study of the
spectrum of genetic factors involved in MDR to microor-
ganisms and, consequently, on the cost-effectiveness of
subsequent disease treatment [214]. Rapid and accurate
identification and characterization of known and new
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antibiotic resistance determinants and their arrangements
play a key role in preventing the emergence and spread
of MDR pathogenic microorganisms in any healthcare
setting [214]. Current knowledge of the type of pathogen
and its antibiotic resistance profile is essential for selection
of therapy and development of new antibacterial drugs
[106, 123, 214] and for reducing the high mortality rate in
infected patients. This knowledge also has particular
significance for the pathogens causing most frequent and
severe types of healthcare-associated and community-
acquired infections such as bloodstream (BSI), urinary
tract (UTI), and wound stream infections (WSI) [170].
The MDR bacterial pathogens of international concern
[36, 161, 252] are presented in Table 1.
Many chromosome- and plasmid-mediated resistance

determinants were successfully identified for most
severe pathogenic bacteria using WGS technologies
(Table 1). Together with data obtained by classic anti-
microbial susceptibility tests [118] and genotyping
methods [66], these determinants were deposited into
the Antibiotic Resistance Genes Database (ARDB)
[146]. Currently, there is an open catalog of more
13,000 antibiotic resistance genes, composing the resis-
tome [253], with rich information, including resistance
profile, mechanisms, requirements, epidemiology, cod-
ing sequences, and their mutations for more than 250
bacterial genera.
Revelation of the links between genetic and pheno-

typic traits of bacteria still remains one of the most
critical issues that thwart implementation of WGS in
clinical and public health practice. Determination of
the genetic components of antibiotic resistance (resist-
ant genotypes) and their correlation to resistant bacter-
ial phenotypes can potentially promote its practical
application. The possibility to ascertain the phenotypic
antimicrobial resistance on the basis of genomic data
has been extensively studied [196, 261]. The resistance
phenotypes determined based on WGS data were com-
pared to the results of phenotypic tests for methicillin-
resistant Staphylococcus aureus (MRSA) [82, 103],
Clostridium difficile [53], Escherichia coli, Klebsiella
pneumonia [100, 218], and Pseudomonas aeruginosa
[41, 124]. The analyses showed that data obtained for
these bacteria through WGS can reliably predict anti-
biotic susceptibility phenotype, with overall sensitivity
and specificity more than 95 % [53, 82, 218]. Hence,
WGS may be applied as first-line antibiotic resistance
screening method in clinical practice of these patho-
gens. However, it is important to remember that in
some cases, bacterial MDR depends on the mode and
level of the resistance gene expression [118]. Thus,
presence of the genetic resistance determinants does
not solely determine MDR phenotype and success/fail-
ure of the antibiotic therapy.
Owing to this and other facts (discussed herein),
current WGS technology can be clinically applicable
only as an integral part of a comprehensive state/govern-
ment-approved workflow for the clinically relevant cases,
e.g., typing of linezolid-resistant Enterococcus faecium or
screening of carbapenem-resistant Enterobacteriaceae
[101, 194]. Future investigations of pathogen resistance
mechanisms together with establishment of robust links
between genetic components and phenotypic traits in
MDR bacteria will help the development of successful
WGS-based antibiotic resistance tests. Development of
standardized procedures for validation and verification
of WGS data, as well user-friendly bioinformatics tools
for quick handling and analysis of the genomic informa-
tion will speed up the implementation of WGS tech-
nologies into laboratory practice. For example, one of
these tools is provided by the Center for Genomic Epi-
demiology [136].

Investigation of MDR evolution and emergence dynamics
WGS has been used for the study of the evolution of re-
sistance (or proto-resistance) to multiple drugs and its
emergence in different healthcare settings [182]. Large-
scale worldwide studies showed that this method could be
applied to elucidate historical antibiotic resistance patterns
in pathogen populations and study infection transmission
mechanisms and emergence dynamics. Specifically, WGS
technologies allowed uncovering the genetic basis behind
the emergence/re-emergence of successful clones in out-
breaks and measuring the rates at which resistance
emerges. In addition, WGS also elucidated some of the
etiologic factors that allow pathogenesis and spreading
MDR bacteria [93, 143, 190].
WGS revealed that the speed of bacterial MDR evolu-

tion depends on the genome plasticity and epidemiology
of the pathogen, as well as type and duration of applied
antibacterial treatment in healthcare settings. For ex-
ample, the number of SNPs and structural variations
(SVs) was higher in MRSA clones in under-resourced
healthcare settings where barriers to transmission were
lower [227]. Furthermore, the number of SNP differ-
ences between isolates belonging to the same outbreaks
positively correlated to the time of their isolation in case
of MRSA and Mycobacterium tuberculosis, pathogens
which are transmitted strictly from human to human
within a hospital community [52, 95, 127, 227, 258]. In
contrast, studies of Salmonella enterica subsp. enterica
and subsp. typhimurium, pathogens which can be trans-
mitted from human to human indirectly through various
sources, did not show any impact on the accumulated
SNP numbers [141, 178]. Genomic analysis also extended
our knowledge about the origin of MDR evolution in
bacterial populations demonstrating that evolution is
acquired through at least three ways:



Table 1 Common MDR bacterial agents of epidemiological importance causing severe infections in hospitals (H) and communities (C)

Bacterial agent Diseases Resistance Example of main resistance determinants revealed in
whole sequenced genomes

Escherichia coli (H, C) UTI, BSI β-Lactams (cephalosporins) ampC, 2 copies of blaT [74]

Quinolones (fluoroquinolones) gyrA (Ser83Leu,Asp87Asn), parC (Ser80Ile,Glu84Gly)
[74, 188]

Klebsiella pneumonia (H, C) UTI, BSI, pneumonia β-Lactams (cephalosporins,
carbapenems)

blaSHV-75, blaSHV-60, blaKPC-2, blaTEM-1, blaTEM-12, blaP1,
blaCTX-M
[132, 145]

Quinolones (fluoroquinolones) qnrA1, qnrB4, oqxAB, gyrA (Ser 83Phe), parC (Ala339Gly,
Asp641Tyr) [209]

Amynoglycosides armA, aph [209]

Colistin IS1 insertion in the mgrB [95, 209]

Staphylococcus aureus (H, C) WSI, BSI β-Lactams (methicillin) mecC [157]

Aminoglycosides aadD [258]

Mupirocines ileS-2 [258]

Mercury resistance mer operon [258]

Antiseptic resistance qacA [258]

Streptococcus pneumonia (C) Pneumonia, meningitis,
otitis

β-Lactams pbp2a, pbp2b, pbp2x, spr1238 [56]

Tetracycline rpsJ, patA, patB [153]

Salmonella enterica subsp.
enterica, Typhimurium,
Choleraesuis (C)

Salmonellosis, foodborne
diarrhea, BS

β-Lactams blaOXA-30, ampC, blaTEM-1, blaTEM-67 [31, 91]

Quinolones (fluoroquinolones) gyrA (Ser83Leu), parC (Ser80Leu), acrAB-tolC [31]

Aminoglycosides 2 copies aadA1, 3 copies aadA3, aac3, aph, strA, strB, sat-1
[91, 109]

Shigella spp. (C) “Bacillary dysenteria” β-Lactams blaTEM-1, blaOXA-1 [257]

Fluoroquinolones mutated parC and gyrA [257]

Aminoglycosides aadA1, aadA2, sat-1 [257]

Neisseria gonorrhoeae (C) Gonorrhea β-Lactams (3rd gen.
cephalosporins)

mtrR (G45D, A39T), mtrCDE (del1327932), penB (G101K,
A102D), penA (mosaic) [54, 83, 240]

Tetracycline rpsJ (V57M), tetM including its promoter, penB [54]

Coagulase-negative
Staphylococci spp.
(CoNS) (H, C)

SSI, endocarditis, and BSI β-Lactams blaZ, mecC [25, 173, 184]

Enterobacter aerogenes (H) SSI and BSI β-Lactams blaTEM-24, 2 copies ampC, 3 copies M-bla, 4 copies bla [48]

Quinolones gyrA (Thr83Ile), parC (Ser80Ile) [47, 48]

Aminoglycosides aadA1, aac(6′) [47, 48]

Rifampicin rpoB (Asp252Tyr) [47, 48]

Acinetobacter baumannii
(H, C)

BSIs, VAP, HAP, SSI,
CA-UTI, ventilator-
associated pneumonia

β-Lactams (3rd gen.
cephalosporins)

bla class A, ISAba1, blaOXA-23, blaOXA-10, blaOXA-69, blaampC,
blaOXA-23, blaOXA-66, blaADC (Nigro et al. 2013 [173]);
[2, 76, 83, 173, 195, 240]), ampC, blaOXA-51-like [74],
blaTEM-1 [2], 5 copies M-bla, 2 copies ampC, blaOXA-82 [204]

Amynoglycosides Modified armA, aac(3′), aac(3)-la, aac(6ʹ), aac(2ʹ)-Ib,
aadA1, aadAB, aphA1, aph(3′), aph6, strAB [2, 71, 204,
254, 265] adeT, aadA2 [204]

Quinolones gyrA (Ser83Leu), parC (Ser80Leu) [2, 71, 204]

BSIs, VAP, HAP, SSI,
CA-UTI, ventilator-
associated pneumonia

Colistin pmrB [90]

Tetracyclines tetAR, adeB [2, 265], bcr [204]

Chloramphenicol cmlA, cmlA5, cat [71], catB6 [265], catB8 [254], cmr [204]

Pseudomonas aeruginosa
(H, C)

BSIs, VAP, HAP, SSI,
CA-UTI, cystic fibrosis (CF)

β-Lactams (3rd gen.
cephalosporins)

blaIMP-1, oprD [163] ampCDR [124]

Quinolones gyrA (Thr83Ile), parC (Ser87Leu) [247]
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Table 1 Common MDR bacterial agents of epidemiological importance causing severe infections in hospitals (H) and communities (C)
(Continued)

Aminoglycosides aac(6′) [163], aph, ant(4′)-IIb, strAB [247], aacA29a/
aacA29b [124]

Colistin pmrAB, phoPQ [247]

Wide range of antibacterial
agents

mexAB-oprM, mexXY, mexCD-oprJ, mexEF-oprN,
mexHI-opmD, mexR, nfxB, mexT, mexG [124]

Mycobacterium
tuberculosis (H, C)

Tuberculosis Rifampicin rpoB (S450L) [52]

Isoniazid katG (P7 frameshift), ptrBa, fadD15, ppsB, atsH [88]

Fluoroquinolone ethambutol
amikacin para-aminosalicylic acid

gyrB (T500N), embB (D1024N), rrs(A514C, A1401G),
thyA (P17L) [52]

BSI bloodstream infection, SSI surgical-site infection, CA-UTI catheter-associated urinary tract infection, VAP ventilator-associated pneumonia, HAP hospital-acquired
pneumonia, WSI wound stream infection, UTI urinary tract infection
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i. Transmission of plasmids bearing diverse
antimicrobial resistance genes between pathogens/or
horizontal gene transfer with the help of mobile
genetic elements (MGEs) [12, 37, 179]

ii. Mutations in bacterial drug-related genes and
intergenic regions [2, 47, 48, 52, 71, 74, 99, 247]

iii. Differential expression of genes which mediate drug
effects [262]

Acquisition of new resistance genes and virulent deter-
minants by horizontal transfer via conjugation, trans-
duction, or transformation usually is associated with
pathogen adaptation to new niches or lifestyles and
affects the evolution of its genomic content, leading to
clinically significant effects. This evolution mostly under-
lies the success of the MDR emerging strains and may
be a major reason of the outbreaks all over the world.
Transmissible plasmids and phages frequently bear re-
sistance genes/cassettes conferring bacterial resistance to
one or several different antibiotics and facilitate their
transfer through different genera. For example, it was re-
vealed that IncA/C plasmids carry extended-spectrum β-
lactamases, AmpC β-lactamases, and carbapenemases
among broad host range pathogenic Enterobacteriaceae
[63, 73, 100, 158, 210, 212]. They are considered the
most common reason of hospital MDR of these bacteria
for many old and new generations of the β-lactams, in-
cluding cephalosporins, penicillins, cephamycins, and
monobactams [110, 162] (Table 1). Other clinically rele-
vant plasmids include pTW20_1, harboring qacA (en-
coding antiseptic resistance) and mer operon (mercury
resistance), and pPR9-like carrying aadD (aminoglyco-
side resistance) and ileS-2 (resistance to mupirocin)
genes, are conjugated between MRSA ST 239 isolates
[227] and, possibly, can be transmitted between other
staphylococcal strains and species [9, 17].
The horizontal gene transfer of chromosomal genes

with the help of MGEs is also important in conferring
resistance to a wide variety of antibiotics, particularly
towards new ones. For instance, recent retrospective
studies of S. aureus showed that all emergent MRSA
populations differed from methicillin-sensitive S. aureus
(MSSA) not only in plasmid replacement and content
but also in such genetic features as small deletion/in-
sertion polymorphisms (DIPs) and presence of MGEs
and resistance genes on the chromosome [230, 231, 241].
Further, it was shown that MDR genes are often associ-
ated with the MGEs and, with their help, can be trans-
ferred to other bacteria between the same or different
species [225, 254]. For example, it was shown that the
evolution of methicillin resistance in nosocomial and
community-acquired MRSA was mostly arisen by ac-
quisition of the staphylococcal cassette chromosome
(SCCmec type IV cassette) integrated into the chromo-
some and carrying the mecA or mecC genes encoding
penicillin-binding proteins, which reduced affinity for β-
lactam antibiotics [76, 205].
Other recent large-scale studies extended our know-

ledge about resistance evolution of S. aureus CC398
lineage, the most prevalent emerging pathogen with broad
host tropism in many European countries [157, 245].
These works shed light on the nature of MDR in CC398
and questioned its origin and the major reasons of its
emergence in clinics. All human-specific MSSA and
MRSA isolates carried two unique genetic markers: ϕ7
bacteriophage and ϕ3 bacteriophage with human-specific
immune evasion genes chp, scn, and sak (only in MRSA)
[157]. Based on these studies, it was hypothesized that
livestock-associated MRSA has diverged from the human-
associated MSSA and that it acquired tetracycline and
methicillin resistance genes and lost phage-carried human
virulence genes [157, 192, 213]. However, further discrete-
trait analyses provided for this lineage did not support the
hypothesis about its human origin and left the question
about evolutionary routes open [245]. This discrepancy
may be explained by the lack of unified and standardized
computational methods and interpretative algorithms
applied for the WGS data analysis.
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The WGS data, accumulating for various bacterial spe-
cies, also showed that specific acquired determinants
(mostly, virulence-related genes or islands) can also be the
key reasons of the emergence of MDR pathogens causing
outbreaks. For instance, it was shown that Panton-
Valentine toxin and sasX gene, encoding a surface protein,
contributed to the outbreaks caused recently by MRSA in
the UK and China, respectively [93, 143]. Further, the
mgrB gene, encoding a transmembrane protein produced
upon activation of the PhoPQ signaling system, was found
to be associated with colistin resistance in re-emergent K.
pneumonia causing nosocomial outbreaks worldwide
[190].
Antibiotic resistance can also be caused by spontan-

eous and induced missense mutations within the anti-
biotic targets or their binding sites, e.g., gyrase subunits
A and B, gyrA and gyrB (targets of quinolones), RNA
polymerase subunit B, rpoB (target of rifampicin), dihy-
drofolate reductase, alr (rimethoprim), protein biotin
ligase, birA (Bio-AMS), or membrane proteins (e.g.,
multidrug efflux protein norM) (Table 1) [99]. For ex-
ample, WGS revealed the mutations in blaI, blaR1, as
well as in the mecA regulone (mecI-mecR1-mecA) in
MRSA [16]. Similarly, it was demonstrated that the
major mechanism of MDR in re-emergent M. tubercu-
losis is primarily arisen by point mutations in rpoB
(S450L), katG (P7 frameshift), gyrB (T500N), embB
(D1024N), rrs (A514C and A1401G), and thyA (P17L)
genes [22, 52, 88, 186, 242].
The genomic information together with powerful bio-

informatics tools made it possible to distinguish the mo-
lecular pathways responsible for MDR-caused diversity.
For example, Darch and colleagues have demonstrated
that distinct recombination events were the dominant
driver of phenotypic diversity in extant population of P.
aeruginosa obtained from a single cystic fibrosis (CF) pa-
tient (with a weight of recombination relative to mutation,
r/m, rate approaching 10) [41]. Other retrospective studies
identified the exact unique genetic SNVs in main
virulence-related genetic factors of P. aeruginosa associ-
ated with epidemic CF infection [81]. The increased resist-
ance of emerging MDR P. aeruginosa to antibiotics was
explained by SNPs enrichment of the efflux pumps which
actively transport the toxic compound out of the bacterial
cell to avoid contact with the target site [45, 113]. Simi-
larly, the revealed genome-wide recombination events in
chromosomal β-lactamase genes blaADC and blaOXA-51-like,
plasmid-borne resistance genes, as well transposon- and
integron-derived modules were also proposed as major
drug resistance diversification drivers for epidemic strains
of Acinetobacter baumannii [215, 254].
Revealed SNPs and SNVs can be potentially used as a

molecular clock to prognose new or potentially emerging/
re-emerging outbreak strains, precise tracking, early
warning, and targeted infection control of pathogenic bac-
teria. For instance, the time frame for the emergence of a
bacterial pathogen clone and its evolution during epi-
demic spread had been estimated for MRSA [95]. On the
basis of the WGS data, the level of nucleotide substitu-
tions was estimated at 1.68 × 10−6 substitutions per site
per year in the BEAST analysis, or 2.72 mutations per
megabase per year in the parsimony [245, 258]. This
translates to approximately one mutation per genome
every 6–10 weeks [95]. Taking into account that 1–3 point
mutations or large genetic rearrangements (recombination
more than 100 bp) in targets related with drug resistance
are enough to make differences in antibiotic susceptibility,
the provisional prediction of an emergence of novel
MRSA clones in clinical settings can be afforded [53, 95].
However, another work demonstrated that using a simple
threshold of a maximal number of mutations to rule out
direct transmission and emergence of MDR M. tubercu-
losis led to inaccurate interpretation of the data [52].
These authors showed that about 38 % of all individual
SNPs were involved in resistance of MDR M. tuberculosis
and made an important contribution to evolution and
emergence of MDR in the bacteria within a single patient
[52].
In summary, together with developed tools for WGS

data analysis (e.g., Rainbow [264]) and unifying genome-
wide database (e.g., M. tuberculosis Variation Database
(GMTV) [29], The Bacterial Isolate Genome Sequence
Database (BIGSdb) [116]) containing the broad spectrum
information about individual mutations of pathogens,
WGS can be a powerful tool for the preliminary predic-
tion of drug resistance, geographical origin, as well clinical
strategies and outcomes.

Diagnostics and control of MDR bacterial infections
Successful containment and prevention of MDR infections
involves (i) timely identification and characterization of
the MDR infectious/outbreak cause, and (ii) discovery of
its source and transmission pathways [86, 222, 249]. A sig-
nificant transformation in MDR infectious disease diag-
nostics has occurred during the past few decades,
including key changes in basic concepts, data analysis ap-
proaches, and, especially, methods of exposure measure-
ment and pathogen surveillance [10]. Today, diagnosis of
DR pathogenic bacteria are mainly done by means of ex-
pensive and time-consuming experimental approaches, in-
cluding complex phenotypic and genotypic standardized
methods [68, 169, 205, 206, 222, 235] (Fig. 1). The tech-
niques applied for this task are mostly based on the detec-
tion of phenotypic and genetic traits related to drug
resistance, pathogenicity or survival mechanisms of patho-
gens. Standardized culture-based methods [235], traditional
typing (such as biotyping, antibiograms, resistograms), and
molecular typing techniques [68, 206, 222] are widely used



Fig. 1 Main characteristics used for the identification and diagnostics of pathogenic bacteria
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to detect and identify the cause and course of the outbreaks
in the clinical laboratories. Over the last few years, these
methods have improved dramatically: they have incorpo-
rated automation to increase speed, discrimination power,
and throughput, and reduce cost. However, none of these
methods is considered optimal for all forms of research and
infections. Choice of the method significantly depends on
the epidemiological problem to solve, time constrains, its
reliability, accuracy, and geographical scale of its use [206].
Furthermore, almost all available approaches have limita-
tions detecting pathogenic microorganisms with rapid
transmission dynamics and mutational rates [169], or
mixed MDR infections involving multiple unrelated strains
or outbreaks caused by closely related isolates [201]. As a
result, existing integrated approaches are laborious, time-
consuming, expensive, and can lead to misdiagnosis.
Although most of the WGS investigations were retro-

spective, they demonstrated that WGS technology may
make real-time genomic diagnostics a reality [117]. In
contrast to multifaceted algorithms used in standard test-
ing, genomic data can provide rapid and accurate detec-
tion and control of emerging MDR pathogenic strains in a
single process, reducing unnecessary infection-control
measures [228]. The genomic information affords unpre-
cedented and detailed insight into microevolution of
pathogenicity factors, antibiotic resistance, and transmis-
sion mechanisms of pathogens, and, thus, allows robust
detection and control of the spread of closely related
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pathogenic isolates in the clinics [14, 130, 142, 239],
communities [30, 72, 77, 84, 159, 203], and globally
[15, 94, 95, 168, 227].
The first application of WGS technology was for

MRSA, the leading cause of healthcare-associated infec-
tions worldwide [45, 55, 171, 172, 258]. WGS techniques
detected closely related MRSA clones associated with
putative outbreaks, which could not be confirmed with
conventional methods, and allowed the reconstruction
of local and intercontinental spread of MRSA lineages
[53, 93, 95, 127, 130, 258]. For instance, Harris and col-
leagues studied a putative MRSA outbreak on a special
care baby unit at a National Health Service Foundation
Trust in Cambridge, UK. During these studies, the cause
of a persistent outbreak, a new type ST2371 with
Panton-Valentine leucocidin encoding gene, was re-
vealed. WGS technique provided the best discrimination
between closely related bacterial clones of the same
MRSA lineage, compared to multilocus sequencing
typing (MLST) analysis [93]. Importantly, this study
resulted in a fundamental shift in the understanding of
transmission dynamics and sources of successful
epidemic MRSA clones between healthcare facilities
and communities. WGS provided strong evidence that
community-associated MRSA can be carried for a long
period by healthy people [75, 93] and become the cause
of healthcare-acquired MRSA infections replacing dom-
inant healthcare-associated lineages [80]. These data fa-
cilitated improved infection-control measures for the
infectious sources (e.g., workers, visitors, equipment).
Later, this study was complemented with more detailed
investigations of cause and sources of hospital- and
community-associated MRSA lineages in settings with
extensive and poor infection-control practices all over
the world [157, 227, 248]. It was shown that low re-
source countries can be the main source of the global
emerging MRSA [227]. Thus, the population of MRSA
ST239 lineage, aka the Brazilian clone most prevalent
across the globe, was significantly more variable (evolved
faster) in countries with low-cost prevention planning
and implementation than in those with well-resourced
healthcare settings [200, 227]. Another work provided
evidence for frequent transfer of most prevalent human-
and animal-associated MDR MRSA CC398 lineage and
indicated that livestock and animals could be the main
source of infection in humans [245]. The fact that S.
aureus could be transferred between humans, animals,
and livestock (probably in all directions) raised the main
concern for clinicians. Together with evidence for higher
levels of MDR in the livestock-associated clades, this
raised the need to change the existing biosecurity con-
trol in agricultural settings.
Pallen and colleagues were the first who applied WGS

technology to study the prolonged hospital outbreak of
MDR A. baumannii in Birmingham, England, between
July 2011 and February 2013. With the help of WGS, a
novel isolate, the causative outbreak agent was revealed
[142, 177]. This clone could not be detected by conven-
tional methods. As in the case of MRSA, it was revealed
that early transmission events can occur through the
ward-based contact and environmental contamination of
the hospital environment [177]. This knowledge led to
tighter ward decontamination procedures and infection-
control interventions with the purpose of reducing the
risk of further transmission.
WGS has shown potential for elucidation of the trans-

mission dynamics of the MDR Salmonella species [6, 177]
and for the detection of various epidemic S. enterica sub-
species [141, 174, 175]. MDR and highly clonal lineages of
K. pneumonia, an important opportunistic pathogen asso-
ciated with nosocomial and community-acquired infec-
tions [189], can be also successfully detected through WGS
[151]. In addition to results for MRSA and A. baumannii
which showed strong evidence of transmission via alterna-
tive routes (e.g., silent transmission vectors), the retrospect-
ive genomic analysis of the nosocomial carbapenem-
resistant K. pneumonia isolates together with epidemio-
logical data revealed unexpected transmission, perhaps
through asymptomatic carriers or inanimate objects (venti-
lators, equipment). In addition, it was concluded that com-
bination of the genomic and patient trace data together
with algorithms which accounted for K. pneumoniae’s cap-
acity for silent colonization can be used for more effective
control of the outbreaks and reconstruction of the most
likely pathogen transmission routes [216].
WGS analysis allowed identification and tracing of MDR

M. tuberculosis more precisely than the currently used con-
ventional typing methods [67, 77, 121, 152, 202, 209, 242].
Using WGS technology, Walker and colleagues first ana-
lyzed TB cases of the community outbreaks in the UK Mid-
lands. Only genomic data allowed elucidation of the genetic
diversity and detection of closely related mycobacterial ge-
notypes causing these outbreaks [242].
Due to the complexity of antibiotic susceptibility regu-

lation mechanisms in P. aeruginosa and the high level of
its diversity, the most indisputable WGS implication
was usually related to diagnostic and control of CF
infections [41, 165]. A number of recent studies of MDR
P. aeruginosa from a single patient have shown that this
technology has a great potential for routine diagnostics and
antibiotic susceptibility detection in a clinically relevant
time frame [41, 124, 247]. It was proposed that further in-
vestigation of the enabling gene pool and resistance mecha-
nisms of MDR P. aeruginosa populations could improve
clinical outcomes of antibiotic sensitivity and detection test-
ing in the future [41].
Besides the retrospective studies, the real-time WGS ana-

lysis was successfully applied for rapid detection of
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infections and outbreaks caused by neonatal MRSA
[53, 130], verocytotoxin-producing E. coli (VTEC)
[114, 120], Legionella sp. [198], carbapenem-resistant K.
pneumoniae [216], C. difficile [53], and A. baumannii [204].
For instance, in 2011, real-time WGS clarified the cause of
a very mysterious outbreak in a farm in Germany. The out-
break was caused by enteroaggregative E.coli O104:H4
clone, epidemiologically linked to human cases and trans-
mitted via contaminated seeds [84, 195, 203, 233]. Another
modification of real-time WGS analysis, direct real-time
WGS (sequencing clinical specimens without the need for
culture), was successfully applied for identification and
characterization of slowly growing and difficult-to-culture
pathogens in clinical samples [7, 98, 150, 211]. Whereas dir-
ect WGS is considered as not cost-effective and less sensi-
tive for some clinical workflows (e.g., in the case of fecal
samples or mixed infections) [126], single-colony sequen-
cing is considered a very promising epidemiological tool
which can address multiple clinically relevant questions
more accurately and faster in the future [129]. A simple
WGS protocol has been developed and tested for the detec-
tion of a broad range of pathogenic bacteria (17 most clin-
ically important pathogens) from a single bacterial colony
[3, 129]. Once the procedure is validated, this method has a
lot of advantages for clinical practice [3]. However, the
single-colony WGS method may be difficult to optimize in
the case of difficult-to-grow pathogens [41].
Although it is presumed that WGS may become the pri-

mary tool to provide pathogen diagnostics and control in
clinical and healthcare settings in the nearest future, many
obstacles remain [126]. Today, real-time genomic diagno-
sis is mostly based on the detection of SNP, SNV, and SV
of relevant multiple genetic loci selected for typing. The
housekeeping, structural, and functional genes and inter-
genic regions [11, 30, 53, 77, 95, 126, 136, 140, 142, 156,
168, 195, 203, 260], as well as the virulent and resistance
factors are considered as clinically important markers and
are applicable for benchtop typing [206]. Growing WGS
data and advances in sequencing technologies constantly
lead to the discovery of new genetic or genomic variations
important for bacterial growth, pathogenesis, antibiotic re-
sistance, and survival. However, before being applied for
diagnostics, this plethora of biomarkers requires intensive
study of their functions and associations with particular
phenotypic changes. Subsequently, the simple and unified
analytical tools/platforms to readily extract relevant infor-
mation from the genome and interpret it without complex
and computer-intensive analysis should be developed, and
the clinical health personnel should have a quick access to
them [135, 136, 140, 256]. One example of this strategy is
the study of Neisseria meningitidis outbreak [57, 78, 115]
which occurred at the University of Southampton, UK, in
1997. Jolley and colleagues developed an integrated ana-
lysis platform and applied it for the robust interpretation
and analysis of WGS data obtained for N. meningitidis. As
a result, this analysis took only a few minutes and permit-
ted complete resolution of the meningococcal outbreak.
While these tools are being developed for self-contained
laboratory workflow, the integration of the WGS technol-
ogy with phenotypic, molecular typing methods [39, 40],
new strategies of sample and culture selection [68], and
epidemiologic data analysis is already enhancing our ability
to control and prevent nosocomial or healthcare-associated
infections.

Development of new diagnostics markers and assays
While WGS sequencing is highly informative, it is not
cheap, fast or readily available for screening DR bacterial
isolates in various healthcare settings today. For example,
current WGS technologies may be too slow for point-of-
care diagnostics. As a result, target-specific PCR, real-time
PCR, and related technologies [160, 223] still remain the
most common methods used in clinical practice. However,
it still remains critical to select specific sequences (signa-
tures/targets) for designing molecular assays for the patho-
gen of interest [5]. In this case, WGS can act as a precursor
to generate specific diagnostic tests for timely case defin-
ition [102, 193, 219]. The genomic data should be analyzed
using computational methods (e.g., KPATH, TOFI, Insignia,
TOPSI, ssGeneFinder, or alignment-free methods) in order
to identify pathogen signatures, estimate their evolutionary
rates across the group, and design highly specific diagnostic
assays for target groups of pathogens [104, 193]. Due to the
obtained WGS data, numerous novel diagnostic genetic tar-
gets have been suggested for routine diagnostics of several
pathogenic bacteria over the last few years. An extensive list
of putative markers is presented in Table 2. WGS technol-
ogy can also provide robust information about the reliabil-
ity of the existing and implemented diagnostic markers and
thus can help in avoiding false-negative and false-positive
results. For example, the obtained WGS data improved the
current diagnostic, cultural, and molecular tests for several
pathogens: S. aureus [184], TB [125], E. coli [51], and K.
pneumoniae [48].

Developing new antibacterial drugs
Today, a lot of strategies are applied to optimize the iden-
tification of new targets and their inhibitors (antibacterial
compounds, hits) for the discovery of new antibacterial
drugs [50, 214] and predict the mechanisms of their action
and their effects in patients. However, clinical manage-
ment of drug-resistant strains still remains cumbersome.
At the same time, the number of newly approved drugs per
year has been decreasing, and only five new antibiotics were
approved since 2003 [18, 49]. WGS can assist this effort by
accelerating the discovery of novel antibacterial inhibitors
and targets overlooked by conventional discovery plat-
forms, e.g., sputum smear, culture, and drug susceptibility



Table 2 List of the putative genetic markers obtained by WGS for diagnostics of the bacterial agents of epidemiological importance

Potential target Location Target identity Pathogen Ref.

mecA/mecC Chr Adapter protein/Penicillin-binding
protein 2a

MRSA/S. aereus [184]

tetM Chr Tetracycline resistance protein Livestock-associated S. aereus CC398 [157]

ϕ3/ϕ7 Chr Bacteriophages Human-specific S. aereus CC398 [157]

Chp Chemotaxis inhibitory protein

Scn Staphylococcal complement inhibitor

Sak Staphylokinase

gp20 Chr Putative prophage DNA transfer protein Verocytotoxin-producing E. coli O104:H4 [102, 193]

impB Pl DNA polymerase type Y

usid000007
(contig 69, 14714:14853)

Chr Sequence positions 47–69 similar to
Ricinus communis putative receptor
serine-threonine kinase mRNA
(XM_002525007.1)

usid000002
(contig 43, 1486:1633)

Chr Positions 4–34 similar to Pseudomonas
putida BIRD-1 major facilitator transporter
protein coding sequence (ADR60257.1)

ISAba1 Chr Transposase of ISAba1, IS4 family MDR A. baumannii [166, 254]

csuE Chr Chaperone-usher pili assembly system MDR A. baumannii, [254]

blaOXA-51 BlaOXA-51-like beta-lactamase GC2 (SG1)

Coding SNP: Chr Colistin-resistant K. pneumonia KPNIH1 [216]

ind(GA) 321 in
KPNIH1_08595 CTG→ATG

Microcin B17 transporter

(L→M) at 130 in
KPNIH1_18808 ACC→ATC

Putative membrane protein

(T→I) at 1106 in
KPNIH1_07189 GGC→TGC

L-Ala-D/L-Glu epimerase and methyl
viologen resistance protein SmvA

(G→ C) at 811 in
KPNIH1_05438

Putative transport protein

ampC Pl/ β-Lactamase β-Lactam resistant Enterobacteriaceae and
P. aeruginosa

[110, 162, 247]

ampD Chr N-acetylmuramyl-L-alanine amidase,
negative regulator of AmpC,AmpD

ampR HTH-type transcriptional activator AmpR

ampG Putative transporter

gyrA (Thr83Ile) Chr DNA gyrase subunit A P. aeruginosa resistant to fluoroquinolones [247]

parC (Ser87Leu) DNA topoisomerase 4 subunit A

blaVIM-2 Pl Beta-lactamase class B VIM-2 P. aeruginosa resistant to β-lactams except
monobactams

[247]

aacA29a/aacA29b
putative aph ant(4′)-IIb

Chra 6′-N-aminoglycoside acetyltransferase
type I, phosphotransferases

Aminoglycoside resistant P. aeruginosa [247]

mexAB-oprM Chr Efflux pumps and multidrug resistance
operon repressors

MDR P. aeruginosa [247]

mexCD-oprJ

mexEF-oprN

mexHI-opmD

mexR Operons respective regulator Genes

nfxB

mexT

mexG

mexMN

mexVW
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(Continued)

mexXY

muxABC-opmB

emrAB-opmG

SMR Small multidrug resistance family of
proteins

triABC Chr Presence triclosan efflux pump operon Triclosan resistant P. aeruginosa [247]

mexJKL Resistance nodulation cell division efflux
pump

czcCBA Chr Cobalt-zinc-cadmium efflux resistance
operon

Heavy metal resistant P. aeruginosa [247]

pmrAB Chr Membrane bound sensor Colistin and polymyxin resistant P. aeruginosa,
S. enterica subsp. Typhimurium, and A. baumannii

[139, 247]

phoPQ Chr Kinases and cytosolic response regulator

60 SNPs Intergenic regions, enzymes, regulatory
and membrane proteins

S. enterica subsp. Enteritidis [87, 176]

iniBAC Drug efflux
operon

M.tuberculosis resistant to rifampicin, isoniazid,
fluoroquinolone ethambutol, amikacin,
para-aminosalicylic acid

[52]

rpoB (S450L)

katG (P7 frameshift)
gyrB (T500N)

embB (D1024N)

rrs (A514C, A1401G)
thyA (P17L)

Ch chromosome, Pl plasmid
aExcept plasmid location in rifampin-resistant P. aeruginosa PU21
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testing. The innovative WGS technologies can be success-
fully applied for clinical trials to evaluate the potential anti-
bacterial targets, inhibitors, efficacy of the drugs, and
therapeutic alteration of the microbiome in a range of con-
ditions for rational structure-based drug design in a single
step (Fig. 2). An important point is that the WGS strategies
of screening for novel “drugable” classes of molecules and
targets are easily compatible with natural product discovery
programs and existing phenotypic high-throughput screen-
ing and thus can significantly improve and speed up
current practical outcomes [13, 35, 108, 148].

Inhibitor-first approach (reverse pharmacology) The
inhibitor-first strategies are more effective than target-
driven ones [220] and remain the main approaches of
choice for delivering antibacterial drugs to the clinics [20].
WGS screening can be applied to identify molecules that
inhibit bacterial growth by diverse mechanisms, including
those that engage multiple targets. An extensive list of the
antimicrobial drugs discovered recently via WGS data is
presented by Deane and Mitchell [44]. As a whole, most of
these natural products are essential components of
the metabolic pathways for the vitamin biosynthetic
(B1, B3, B9), fatty acid synthesis (FASII), and isoprenoid
biosynthesis (fosmidomycin, 6-fluoromevalonate). Genomic
analysis can also help to reveal genes or gene clusters that
are important for biosynthesis of natural antibacterial in-
hibitors but remain silent under laboratory growth condi-
tions or in the environment. For example, induced
expression analysis of environmental DNA gene clusters
revealed that tetarimycin A, a new class of tetracylic
MRSA-active antibiotic isolated from the culture broth
extract of Streptomyces albus, was encoded by the tam
gene cluster [119]. Screening of libraries of complete ge-
nomes of the soil microbial community extended the po-
tential value of this compound having revealed numerous
silent tam-like gene clusters that possibly encode other
members of tetarimycin family in the environment [119].
Streptomyces coelicolor is another example. Before com-
pletion of its genome sequence, only three gene clusters
coding natural products had been identified for actinorho-
din [154], prodiginine [58], and lipopeptide calcium-
dependent antibiotic [32]. WGS revealed that S. coelicolor
carries clusters of new “cryptic” genes which have a poten-
tial for biosynthesis of 29 structurally complex unknown
natural products that can be potentially applied as antimi-
crobials [38].

Target-driven approaches Knowledge of the three-
dimensional structure of the drugable targets can also be
used for generating or discovering novel-specific inhibitors.
Traditionally, a target-driven approach starts from high-



Fig 2 Schematic procedure of drug development based on genomic data, obtained by WGS
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throughput screening for inhibitors of a purified target
protein. Unfortunately, most inhibitors identified in high-
throughput screenings are not active against live bacteria
or are not safe for use in humans [185]. WGS can contrib-
ute to the de bene esse discovery of the candidate genetic
targets for both inhibitors of known or entirely novel mech-
anism of action (MOAs) before conventional screening for
DR bacteria. Determination of resistance mutations in the
targets by WGS can also be used for evaluation and estima-
tion of the resistance of the bacterial population to the
drug. The target-driven WGS approach was first applied
for target FabF, an enzyme required for fatty acid biosyn-
thesis (FAS) [122]. Four novel type II FAS (FASII) inhibitors
with broad spectrum activity against Gram-positive bac-
teria, including MRSA, Platensimcyin, Plantencin, BABX,
and Phomallenic acid C, were developed using this method
[19, 122, 207, 244, 259]. Recently, several novel antibiotics,
fasamycin A and B, with specific activity against FabF of
MRSA and vancomycin-resistant Enterococcus faecalis were
also revealed [61].
Studies performed on a collection of several human

pathogens suggested that on the average, about 15–25 % of
all genes in a genome are potential drugable targets
[33, 164, 238]. These studies concluded that the potential
targets are regions whose products/structures are import-
ant for bacterial growth and survival under a variety of con-
ditions (e.g., the synthetic machinery of the bacterial
membranes, peptidoglycans, lipopolysaccharides, the DNA
replication machinery, the nucleic acid synthesis pathway,
and ribosomal structures) but do not prevent growth in
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animals or humans [243]. Thus, WGS screening identified
mutations correlating with mycobacterial MDR in genes
involved in respiration, fatty acid biosynthesis kasA
[137], qcrB [1, 187], protein synthesis aspS [89, 107], pro-
tein secretion eccB3 [107], polyketide biosynthesis pks13
[107, 246], mycolic acid transport mmpL3 [197], and arabi-
nogalactan synthesis dprE1 [34]. Another study of patho-
genic bacteria revealed other candidate structures e.g.,
amino-acyl-tRNA binding site (A-site) and components
of the 2-C-methyl-D-erythritol 4-phosphate (MEP)
pathway which are also potential targets for the develop-
ment of new antibiotics for various emerging pathogens
[105, 186]. Screening of bacterial genomes for the pres-
ence of this ligand can be used for the development of
drugs which are active against a wide range of pathogens
[64, 105, 236].
However, the target-driven method has some limita-

tions. For example, it can only be applied if resistant
strains were obtained. Furthermore, it is important to
remember that the target-mechanism identified (such
as efflux pump expression, chemical inactivation, or
malfunction of transforming an inactive prodrug into
the active derivative) can be just one of the existing
mechanisms by which mutations can impart resistance.
Presence of several candidate targets, which belong to
the same protein family with conserved inhibitor bind-
ing, can also complicate their further interpretation and
evaluation by overexpression analyses [21, 234]. In
addition, mutations in nonessential genes can also sig-
nificantly modulate the main target’s structure or func-
tionality resulting in partial activity of antibiotics [147].

Clinical trials WGS can be applied to design clinical tri-
als more efficiently. First, it can be used at the early
phases of drug development to screen a phylogenetically
diverse collection of the pathogens for the presence and
variability of the candidate drug’s target. Such analysis
will prove that this target and its variations are valid and
important for all species and lineages of the pathogenic
genus and, thus, reduce the chance to miss any resistant
strains [128].
Second, WGS can be used to determine drug’s MOA dir-

ectly. Although it is not mandatory to define an antibacter-
ial compound’s MOA for use in humans, this knowledge
can help developing novel drugs for a broad range of bac-
teria and evaluate their toxicity and specificity a priori.
Knowledge of MOAs will also reduce time for clinical trials
of chemically redundant putative compounds that fail for
the same mechanistic reasons. Further, identification of the
MOA and candidate targets can give another chance to
existing antibiotics. For example, bottromycins, antibacter-
ial peptides with activity against several Gram-positive bac-
teria and mycoplasma, were discovered more than 50 years
ago. Later on, it was revealed that these peptides’ binding
A-site on the 50S ribosome lead to the inhibition of protein
synthesis and thus can become a novel promising class of
antibiotics applied against vancomycin-resistant Entero-
cocci (VRE) and MRSA [105].
Third, knowledge about resistance mechanisms at the

genetic level is very important for determining and avoiding
cross-resistance of the pathogen, when multiple antibiotics
should be applied for treatment [167]. Fourth, sequencing
of pathogens during clinical trials has the potential to dis-
tinguish exogenous re-infection from the primary infection.
This is crucial in order to assess the efficacy of study drugs
and estimate the therapeutic effect in a range of conditions
[22, 23, 127, 237].
However, as the field of the genomic drug and target

discovery moves forward, the problem stemming from the
elucidation of novel unknown classes of gene products re-
mains significant. It is important to remember that no sin-
gle method is sufficient to define the MOAs of most
antibacterial drugs, but a complex approach is required
[27]. The detailed genomic analysis of the human patho-
gens (microbiota), as well as gene expression and drug
susceptibility analyses of pathogens, together with power-
ful bioinformatics tools, can provide new applications to
“old” drugs and invigorate the discovery process for novel
antibiotics [43, 191]. In this regard, the discovery of the
novel anti-TB inhibitors (e.g., bedaquiline, pyridomycin,
SQ109, BM212, adamantyl ureas, benzimidazole, BTZ,
TCA, and imidazol[1,2-a]pyridine related derivatives) suc-
ceeded by a combination of high-throughput screening
and WGS analysis of spontaneous resistant mutants for
target identification, combined with modern bioinformat-
ics tools [8, 97, 183]. Zomer and colleagues also demon-
strated that the combination of high-density transposon
mutagenesis, WGS, and integrative genomics has a great
potential for reliable identification of potential drug tar-
gets in Streptococcus pneumoniae, Haemophilus influen-
zae, and Moraxella catarrhalis [164]. This complex
analysis predicted 249 potential drug targets, 67 of which
were targets for 75 FDA-approved antimicrobials and 35
other researched small molecule inhibitors.

Conclusions
What does the future hold for WGS? Herein, we showed
that WGS may be well poised to make a decisive impact
on the study and control of MDR in pathogenic bacteria
(Table 1) [126]. However, although not reviewed here,
studies have shown that WGS can also contribute to the
investigation of various pathogenic and beneficial resist-
ant microorganisms: bacteria [70, 155], fungi (Candida
spp., Cryptococcus neoformans, Pneumocystis spp., and
Aspergillus spp.) [208], and viruses (HIV virus, hepatitis
B, hepatitis C, influenza, herpes viruses) [144, 255]. Of
course, we should not neglect the potential importance
of the human genome sequencing and investigation of



Punina et al. Human Genomics  (2015) 9:19 Page 14 of 20
host–pathogen interaction for patient management and
drug development. The combination of the MDR bacterial
and human WGS data together with genome-wide associ-
ation studies and expanding computational capacity offers
new power to elucidate host immune traits and genetic
factors/variants contributing/altering to susceptibility to
MDR bacterial diseases in humans [28]. Such studies have
been extensively published [4, 28, 65, 226].
Technical development promises portable, single-mol-

ecule, long-read, and user-friendly sequencing platforms,
with high functionality and cost-effectiveness. These novel
technologies will provide unprecedented opportunities for
clinics and public health and may soon change our lifestyle.
However, there are still many difficulties to overcome.
There is a call for conceptual change of rational sampling
strategies, experiment design, and data analysis manage-
ment. The proper collection, processing, and storage of
biological specimens are also critical. The pathway from
sequencing the DNA of a specimen to a clinical treat-
ment plan of the patient depends on the integration of
each sample’s genomic information with databases that
contain known genotype–phenotype correlations and
clinical associations obtained from large sample sets.
Well curated and regularly updated databases of resist-
ance genotype–phenotype links of MDR pathogens and
computational tools to interrogate the ever-increasing
information in a robust way are urgently required for
MDR pathogen identification and control as well as for
novel drug development. These improvements will help
to solve many of the critical issues of WGS applicability
for both public health and scientific purposes.
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